Abstract:The rise of foundation models has shifted focus from resource-intensive fine-tuning to prompt engineering, a paradigm that steers model behavior through input design rather than weight updates. While manual prompt engineering faces limitations in scalability, adaptability, and cross-modal alignment, automated methods, spanning foundation model (FM) based optimization, evolutionary methods, gradient-based optimization, and reinforcement learning, offer promising solutions. Existing surveys, however, remain fragmented across modalities and methodologies. This paper presents the first comprehensive survey on automated prompt engineering through a unified optimization-theoretic lens. We formalize prompt optimization as a maximization problem over discrete, continuous, and hybrid prompt spaces, systematically organizing methods by their optimization variables (instructions, soft prompts, exemplars), task-specific objectives, and computational frameworks. By bridging theoretical formulation with practical implementations across text, vision, and multimodal domains, this survey establishes a foundational framework for both researchers and practitioners, while highlighting underexplored frontiers in constrained optimization and agent-oriented prompt design.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities across various domains, especially in text processing and generative tasks. Recent advancements in the reasoning capabilities of state-of-the-art LLMs, such as OpenAI-o1, have significantly broadened their applicability, particularly in complex problem-solving and logical inference. However, most existing LLMs struggle with notable limitations in handling graph combinatorial optimization (GCO) problems. To bridge this gap, we formally define the Optimal Thoughts Design (OTD) problem, including its state and action thought space. We then introduce a novel framework, GraphThought, designed to generate high-quality thought datasets for GCO problems. Leveraging these datasets, we fine-tune the Llama-3-8B-Instruct model to develop Llama-GT. Notably, despite its compact 8B-parameter architecture, Llama-GT matches the performance of state-of-the-art LLMs on the GraphArena benchmark. Experimental results show that our approach outperforms both proprietary and open-source models, even rivaling specialized models like o1-mini. This work sets a new state-of-the-art benchmark while challenging the prevailing notion that model scale is the primary driver of reasoning capability.
Abstract:Embodied multi-agent systems (EMAS) have attracted growing attention for their potential to address complex, real-world challenges in areas such as logistics and robotics. Recent advances in foundation models pave the way for generative agents capable of richer communication and adaptive problem-solving. This survey provides a systematic examination of how EMAS can benefit from these generative capabilities. We propose a taxonomy that categorizes EMAS by system architectures and embodiment modalities, emphasizing how collaboration spans both physical and virtual contexts. Central building blocks, perception, planning, communication, and feedback, are then analyzed to illustrate how generative techniques bolster system robustness and flexibility. Through concrete examples, we demonstrate the transformative effects of integrating foundation models into embodied, multi-agent frameworks. Finally, we discuss challenges and future directions, underlining the significant promise of EMAS to reshape the landscape of AI-driven collaboration.
Abstract:Unmanned Aerial Vehicles (UAVs) and Automated Guided Vehicles (AGVs) increasingly collaborate in logistics, surveillance, inspection tasks and etc. However, existing simulators often focus on a single domain, limiting cross-domain study. This paper presents the SkyRover, a modular simulator for UAV-AGV multi-agent pathfinding (MAPF). SkyRover supports realistic agent dynamics, configurable 3D environments, and convenient APIs for external solvers and learning methods. By unifying ground and aerial operations, it facilitates cross-domain algorithm design, testing, and benchmarking. Experiments highlight SkyRover's capacity for efficient pathfinding and high-fidelity simulations in UAV-AGV coordination. Project is available at https://sites.google.com/view/mapf3d/home.
Abstract:State estimation remains a fundamental challenge across numerous domains, from autonomous driving, aircraft tracking to quantum system control. Although Bayesian filtering has been the cornerstone solution, its classical model-based paradigm faces two major limitations: it struggles with inaccurate state space model (SSM) and requires extensive prior knowledge of noise characteristics. We present TrackDiffuser, a generative framework addressing both challenges by reformulating Bayesian filtering as a conditional diffusion model. Our approach implicitly learns system dynamics from data to mitigate the effects of inaccurate SSM, while simultaneously circumventing the need for explicit measurement models and noise priors by establishing a direct relationship between measurements and states. Through an implicit predict-and-update mechanism, TrackDiffuser preserves the interpretability advantage of traditional model-based filtering methods. Extensive experiments demonstrate that our framework substantially outperforms both classical and contemporary hybrid methods, especially in challenging non-linear scenarios involving non-Gaussian noises. Notably, TrackDiffuser exhibits remarkable robustness to SSM inaccuracies, offering a practical solution for real-world state estimation problems where perfect models and prior knowledge are unavailable.
Abstract:Information design (ID) explores how a sender influence the optimal behavior of receivers to achieve specific objectives. While ID originates from everyday human communication, existing game-theoretic and machine learning methods often model information structures as numbers, which limits many applications to toy games. This work leverages LLMs and proposes a verbalized framework in Bayesian persuasion (BP), which extends classic BP to real-world games involving human dialogues for the first time. Specifically, we map the BP to a verbalized mediator-augmented extensive-form game, where LLMs instantiate the sender and receiver. To efficiently solve the verbalized game, we propose a generalized equilibrium-finding algorithm combining LLM and game solver. The algorithm is reinforced with techniques including verbalized commitment assumptions, verbalized obedience constraints, and information obfuscation. Numerical experiments in dialogue scenarios, such as recommendation letters, courtroom interactions, and law enforcement, validate that our framework can both reproduce theoretical results in classic BP and discover effective persuasion strategies in more complex natural language and multi-stage scenarios.
Abstract:Finetuned large language models (LLMs) have shown remarkable performance in financial tasks, such as sentiment analysis and information retrieval. Due to privacy concerns, finetuning and deploying Financial LLMs (FinLLMs) locally are crucial for institutions. However, finetuning FinLLMs poses challenges including GPU memory constraints and long input sequences. In this paper, we employ quantized low-rank adaptation (QLoRA) to finetune FinLLMs, which leverage low-rank matrix decomposition and quantization techniques to significantly reduce computational requirements while maintaining high model performance. We also employ data and pipeline parallelism to enable local finetuning using cost-effective, widely accessible GPUs. Experiments on financial datasets demonstrate that our method achieves substantial improvements in accuracy, GPU memory usage, and time efficiency, underscoring the potential of lowrank methods for scalable and resource-efficient LLM finetuning.
Abstract:Dynamic graphs exhibit intertwined spatio-temporal evolutionary patterns, widely existing in the real world. Nevertheless, the structure incompleteness, noise, and redundancy result in poor robustness for Dynamic Graph Neural Networks (DGNNs). Dynamic Graph Structure Learning (DGSL) offers a promising way to optimize graph structures. However, aside from encountering unacceptable quadratic complexity, it overly relies on heuristic priors, making it hard to discover underlying predictive patterns. How to efficiently refine the dynamic structures, capture intrinsic dependencies, and learn robust representations, remains under-explored. In this work, we propose the novel DG-Mamba, a robust and efficient Dynamic Graph structure learning framework with the Selective State Space Models (Mamba). To accelerate the spatio-temporal structure learning, we propose a kernelized dynamic message-passing operator that reduces the quadratic time complexity to linear. To capture global intrinsic dynamics, we establish the dynamic graph as a self-contained system with State Space Model. By discretizing the system states with the cross-snapshot graph adjacency, we enable the long-distance dependencies capturing with the selective snapshot scan. To endow learned dynamic structures more expressive with informativeness, we propose the self-supervised Principle of Relevant Information for DGSL to regularize the most relevant yet least redundant information, enhancing global robustness. Extensive experiments demonstrate the superiority of the robustness and efficiency of our DG-Mamba compared with the state-of-the-art baselines against adversarial attacks.
Abstract:Federated continual learning (FCL) aims to learn from sequential data stream in the decentralized federated learning setting, while simultaneously mitigating the catastrophic forgetting issue in classical continual learning. Existing FCL methods usually employ typical rehearsal mechanisms, which could result in privacy violations or additional onerous storage and computational burdens. In this work, an efficient and non-IID robust federated continual learning framework, called Federated Prototype-Augmented Prompt Learning (FPPL), is proposed. The FPPL can collaboratively learn lightweight prompts augmented by prototypes without rehearsal. On the client side, a fusion function is employed to fully leverage the knowledge contained in task-specific prompts for alleviating catastrophic forgetting. Additionally, global prototypes aggregated from the server are used to obtain unified representation through contrastive learning, mitigating the impact of non-IID-derived data heterogeneity. On the server side, locally uploaded prototypes are utilized to perform debiasing on the classifier, further alleviating the performance degradation caused by both non-IID and catastrophic forgetting. Empirical evaluations demonstrate the effectiveness of FPPL, achieving notable performance with an efficient design while remaining robust to diverse non-IID degrees. Code is available at: https://github.com/ycheoo/FPPL.
Abstract:Group Equivariant Convolution (GConv) can effectively handle rotational symmetry data. They assume uniform and strict rotational symmetry across all features, as the transformations under the specific group. However, real-world data rarely conforms to strict rotational symmetry commonly referred to as Rotational Symmetry-Breaking in the system or dataset, making GConv unable to adapt effectively to this phenomenon. Motivated by this, we propose a simple but highly effective method to address this problem, which utilizes a set of learnable biases called the $G$-Biases under the group order to break strict group constraints and achieve \textbf{R}elaxed \textbf{R}otational \textbf{E}quivarant \textbf{Conv}olution (RREConv). We conduct extensive experiments to validate Relaxed Rotational Equivariance on rotational symmetry groups $\mathcal{C}_n$ (e.g. $\mathcal{C}_2$, $\mathcal{C}_4$, and $\mathcal{C}_6$ groups). Further experiments demonstrate that our proposed RREConv-based methods achieve excellent performance, compared to existing GConv-based methods in classification and detection tasks on natural image datasets.