Abstract:Tracking the 6DoF pose of unknown objects in monocular RGB video sequences is crucial for robotic manipulation. However, existing approaches typically rely on accurate depth information, which is non-trivial to obtain in real-world scenarios. Although depth estimation algorithms can be employed, geometric inaccuracy can lead to failures in RGBD-based pose tracking methods. To address this challenge, we introduce GSGTrack, a novel RGB-based pose tracking framework that jointly optimizes geometry and pose. Specifically, we adopt 3D Gaussian Splatting to create an optimizable 3D representation, which is learned simultaneously with a graph-based geometry optimization to capture the object's appearance features and refine its geometry. However, the joint optimization process is susceptible to perturbations from noisy pose and geometry data. Thus, we propose an object silhouette loss to address the issue of pixel-wise loss being overly sensitive to pose noise during tracking. To mitigate the geometric ambiguities caused by inaccurate depth information, we propose a geometry-consistent image pair selection strategy, which filters out low-confidence pairs and ensures robust geometric optimization. Extensive experiments on the OnePose and HO3D datasets demonstrate the effectiveness of GSGTrack in both 6DoF pose tracking and object reconstruction.
Abstract:The proliferation of Internet memes in the age of social media necessitates effective identification of harmful ones. Due to the dynamic nature of memes, existing data-driven models may struggle in low-resource scenarios where only a few labeled examples are available. In this paper, we propose an agency-driven framework for low-resource harmful meme detection, employing both outward and inward analysis with few-shot annotated samples. Inspired by the powerful capacity of Large Multimodal Models (LMMs) on multimodal reasoning, we first retrieve relative memes with annotations to leverage label information as auxiliary signals for the LMM agent. Then, we elicit knowledge-revising behavior within the LMM agent to derive well-generalized insights into meme harmfulness. By combining these strategies, our approach enables dialectical reasoning over intricate and implicit harm-indicative patterns. Extensive experiments conducted on three meme datasets demonstrate that our proposed approach achieves superior performance than state-of-the-art methods on the low-resource harmful meme detection task.
Abstract:Simulated patient systems play a crucial role in modern medical education and research, providing safe, integrative learning environments and enabling clinical decision-making simulations. Large Language Models (LLM) could advance simulated patient systems by replicating medical conditions and patient-doctor interactions with high fidelity and low cost. However, ensuring the effectiveness and trustworthiness of these systems remains a challenge, as they require a large, diverse, and precise patient knowledgebase, along with a robust and stable knowledge diffusion to users. Here, we developed AIPatient, an advanced simulated patient system with AIPatient Knowledge Graph (AIPatient KG) as the input and the Reasoning Retrieval-Augmented Generation (Reasoning RAG) agentic workflow as the generation backbone. AIPatient KG samples data from Electronic Health Records (EHRs) in the Medical Information Mart for Intensive Care (MIMIC)-III database, producing a clinically diverse and relevant cohort of 1,495 patients with high knowledgebase validity (F1 0.89). Reasoning RAG leverages six LLM powered agents spanning tasks including retrieval, KG query generation, abstraction, checker, rewrite, and summarization. This agentic framework reaches an overall accuracy of 94.15% in EHR-based medical Question Answering (QA), outperforming benchmarks that use either no agent or only partial agent integration. Our system also presents high readability (median Flesch Reading Ease 77.23; median Flesch Kincaid Grade 5.6), robustness (ANOVA F-value 0.6126, p<0.1), and stability (ANOVA F-value 0.782, p<0.1). The promising performance of the AIPatient system highlights its potential to support a wide range of applications, including medical education, model evaluation, and system integration.
Abstract:Generative language models (LMs) offer numerous advantages but may produce inappropriate or harmful outputs due to the harmful knowledge acquired during pre-training. This knowledge often manifests as undesirable correspondences, such as "harmful prompts" leading to "harmful outputs," which our research aims to mitigate through unlearning techniques.However, existing unlearning methods based on gradient ascent can significantly impair the performance of LMs. To address this issue, we propose a novel approach called Weighted Positional N-pair (WPN) Learning, which leverages position-weighted mean pooling within an n-pair contrastive learning framework. WPN is designed to modify the output distribution of LMs by eliminating specific harmful outputs (e.g., replacing toxic responses with neutral ones), thereby transforming the model's behavior from "harmful prompt-harmful output" to "harmful prompt-harmless response".Experiments on OPT and GPT-NEO LMs show that WPN effectively reduces the proportion of harmful responses, achieving a harmless rate of up to 95.8\% while maintaining stable performance on nine common benchmarks (with less than 2\% degradation on average). Moreover, we provide empirical evidence to demonstrate WPN's ability to weaken the harmful correspondences in terms of generalizability and robustness, as evaluated on out-of-distribution test sets and under adversarial attacks.
Abstract:3D point cloud segmentation has received significant interest for its growing applications. However, the generalization ability of models suffers in dynamic scenarios due to the distribution shift between test and training data. To promote robustness and adaptability across diverse scenarios, test-time adaptation (TTA) has recently been introduced. Nevertheless, most existing TTA methods are developed for images, and limited approaches applicable to point clouds ignore the inherent hierarchical geometric structures in point cloud streams, i.e., local (point-level), global (object-level), and temporal (frame-level) structures. In this paper, we delve into TTA in 3D point cloud segmentation and propose a novel Hierarchical Geometry Learning (HGL) framework. HGL comprises three complementary modules from local, global to temporal learning in a bottom-up manner.Technically, we first construct a local geometry learning module for pseudo-label generation. Next, we build prototypes from the global geometry perspective for pseudo-label fine-tuning. Furthermore, we introduce a temporal consistency regularization module to mitigate negative transfer. Extensive experiments on four datasets demonstrate the effectiveness and superiority of our HGL. Remarkably, on the SynLiDAR to SemanticKITTI task, HGL achieves an overall mIoU of 46.91\%, improving GIPSO by 3.0\% and significantly reducing the required adaptation time by 80\%. The code is available at https://github.com/tpzou/HGL.
Abstract:In frame-based vision, object detection faces substantial performance degradation under challenging conditions due to the limited sensing capability of conventional cameras. Event cameras output sparse and asynchronous events, providing a potential solution to solve these problems. However, effectively fusing two heterogeneous modalities remains an open issue. In this work, we propose a novel hierarchical feature refinement network for event-frame fusion. The core concept is the design of the coarse-to-fine fusion module, denoted as the cross-modality adaptive feature refinement (CAFR) module. In the initial phase, the bidirectional cross-modality interaction (BCI) part facilitates information bridging from two distinct sources. Subsequently, the features are further refined by aligning the channel-level mean and variance in the two-fold adaptive feature refinement (TAFR) part. We conducted extensive experiments on two benchmarks: the low-resolution PKU-DDD17-Car dataset and the high-resolution DSEC dataset. Experimental results show that our method surpasses the state-of-the-art by an impressive margin of $\textbf{8.0}\%$ on the DSEC dataset. Besides, our method exhibits significantly better robustness (\textbf{69.5}\% versus \textbf{38.7}\%) when introducing 15 different corruption types to the frame images. The code can be found at the link (https://github.com/HuCaoFighting/FRN).
Abstract:Although recent efforts have extended Neural Radiance Fields (NeRF) into LiDAR point cloud synthesis, the majority of existing works exhibit a strong dependence on precomputed poses. However, point cloud registration methods struggle to achieve precise global pose estimation, whereas previous pose-free NeRFs overlook geometric consistency in global reconstruction. In light of this, we explore the geometric insights of point clouds, which provide explicit registration priors for reconstruction. Based on this, we propose Geometry guided Neural LiDAR Fields(GeoNLF), a hybrid framework performing alternately global neural reconstruction and pure geometric pose optimization. Furthermore, NeRFs tend to overfit individual frames and easily get stuck in local minima under sparse-view inputs. To tackle this issue, we develop a selective-reweighting strategy and introduce geometric constraints for robust optimization. Extensive experiments on NuScenes and KITTI-360 datasets demonstrate the superiority of GeoNLF in both novel view synthesis and multi-view registration of low-frequency large-scale point clouds.
Abstract:Large vision-language models (LVLMs) have significantly improved multimodal reasoning tasks, such as visual question answering and image captioning. These models embed multimodal facts within their parameters, rather than relying on external knowledge bases to store factual information explicitly. However, the content discerned by LVLMs may deviate from actual facts due to inherent bias or incorrect inference. To address this issue, we introduce MFC-Bench, a rigorous and comprehensive benchmark designed to evaluate the factual accuracy of LVLMs across three tasks: Manipulation, Out-of-Context, and Veracity Classification. Through our evaluation on MFC-Bench, we benchmarked 12 diverse and representative LVLMs, uncovering that current models still fall short in multimodal fact-checking and demonstrate insensitivity to various forms of manipulated content. We hope that MFC-Bench could raise attention to the trustworthy artificial intelligence potentially assisted by LVLMs in the future. The MFC-Bench and accompanying resources are publicly accessible at https://github.com/wskbest/MFC-Bench, contributing to ongoing research in the multimodal fact-checking field.
Abstract:The emerging video LMMs (Large Multimodal Models) have achieved significant improvements on generic video understanding in the form of VQA (Visual Question Answering), where the raw videos are captured by cameras. However, a large portion of videos in real-world applications are edited videos, \textit{e.g.}, users usually cut and add effects/modifications to the raw video before publishing it on social media platforms. The edited videos usually have high view counts but they are not covered in existing benchmarks of video LMMs, \textit{i.e.}, ActivityNet-QA, or VideoChatGPT benchmark. In this paper, we leverage the edited videos on a popular short video platform, \textit{i.e.}, TikTok, and build a video VQA benchmark (named EditVid-QA) covering four typical editing categories, i.e., effect, funny, meme, and game. Funny and meme videos benchmark nuanced understanding and high-level reasoning, while effect and game evaluate the understanding capability of artificial design. Most of the open-source video LMMs perform poorly on the EditVid-QA benchmark, indicating a huge domain gap between edited short videos on social media and regular raw videos. To improve the generalization ability of LMMs, we collect a training set for the proposed benchmark based on both Panda-70M/WebVid raw videos and small-scale TikTok/CapCut edited videos, which boosts the performance on the proposed EditVid-QA benchmark, indicating the effectiveness of high-quality training data. We also identified a serious issue in the existing evaluation protocol using the GPT-3.5 judge, namely a "sorry" attack, where a sorry-style naive answer can achieve an extremely high rating from the GPT judge, e.g., over 4.3 for correctness score on VideoChatGPT evaluation protocol. To avoid the "sorry" attacks, we evaluate results with GPT-4 judge and keyword filtering. The datasets will be released for academic purposes only.
Abstract:We consider the problem of user-adaptive 3D gaze estimation. The performance of person-independent gaze estimation is limited due to interpersonal anatomical differences. Our goal is to provide a personalized gaze estimation model specifically adapted to a target user. Previous work on user-adaptive gaze estimation requires some labeled images of the target person data to fine-tune the model at test time. However, this can be unrealistic in real-world applications, since it is cumbersome for an end-user to provide labeled images. In addition, previous work requires the training data to have both gaze labels and person IDs. This data requirement makes it infeasible to use some of the available data. To tackle these challenges, this paper proposes a new problem called efficient label-free user adaptation in gaze estimation. Our model only needs a few unlabeled images of a target user for the model adaptation. During offline training, we have some labeled source data without person IDs and some unlabeled person-specific data. Our proposed method uses a meta-learning approach to learn how to adapt to a new user with only a few unlabeled images. Our key technical innovation is to use a generalization bound from domain adaptation to define the loss function in meta-learning, so that our method can effectively make use of both the labeled source data and the unlabeled person-specific data during training. Extensive experiments validate the effectiveness of our method on several challenging benchmarks.