Abstract:Sound source localization aims to localize objects emitting the sound in visual scenes. Recent works obtaining impressive results typically rely on contrastive learning. However, the common practice of randomly sampling negatives in prior arts can lead to the false negative issue, where the sounds semantically similar to visual instance are sampled as negatives and incorrectly pushed away from the visual anchor/query. As a result, this misalignment of audio and visual features could yield inferior performance. To address this issue, we propose a novel audio-visual learning framework which is instantiated with two individual learning schemes: self-supervised predictive learning (SSPL) and semantic-aware contrastive learning (SACL). SSPL explores image-audio positive pairs alone to discover semantically coherent similarities between audio and visual features, while a predictive coding module for feature alignment is introduced to facilitate the positive-only learning. In this regard SSPL acts as a negative-free method to eliminate false negatives. By contrast, SACL is designed to compact visual features and remove false negatives, providing reliable visual anchor and audio negatives for contrast. Different from SSPL, SACL releases the potential of audio-visual contrastive learning, offering an effective alternative to achieve the same goal. Comprehensive experiments demonstrate the superiority of our approach over the state-of-the-arts. Furthermore, we highlight the versatility of the learned representation by extending the approach to audio-visual event classification and object detection tasks. Code and models are available at: https://github.com/zjsong/SACL.
Abstract:Generating a realistic, large-scale 3D virtual city remains a complex challenge due to the involvement of numerous 3D assets, various city styles, and strict layout constraints. Existing approaches provide promising attempts at procedural content generation to create large-scale scenes using Blender agents. However, they face crucial issues such as difficulties in scaling up generation capability and achieving fine-grained control at the semantic layout level. To address these problems, we propose a novel multi-modal controllable procedural content generation method, named CityX, which enhances realistic, unbounded 3D city generation guided by multiple layout conditions, including OSM, semantic maps, and satellite images. Specifically, the proposed method contains a general protocol for integrating various PCG plugins and a multi-agent framework for transforming instructions into executable Blender actions. Through this effective framework, CityX shows the potential to build an innovative ecosystem for 3D scene generation by bridging the gap between the quality of generated assets and industrial requirements. Extensive experiments have demonstrated the effectiveness of our method in creating high-quality, diverse, and unbounded cities guided by multi-modal conditions. Our project page: https://cityx-lab.github.io.
Abstract:The scarcity of large-scale 3D-text paired data poses a great challenge on open vocabulary 3D scene understanding, and hence it is popular to leverage internet-scale 2D data and transfer their open vocabulary capabilities to 3D models through knowledge distillation. However, the existing distillation-based 3D scene understanding approaches rely on the representation capacity of 2D models, disregarding the exploration of geometric priors and inherent representational advantages offered by 3D data. In this paper, we propose an effective approach, namely Geometry Guided Self-Distillation (GGSD), to learn superior 3D representations from 2D pre-trained models. Specifically, we first design a geometry guided distillation module to distill knowledge from 2D models, and then leverage the 3D geometric priors to alleviate the inherent noise in 2D models and enhance the representation learning process. Due to the advantages of 3D representation, the performance of the distilled 3D student model can significantly surpass that of the 2D teacher model. This motivates us to further leverage the representation advantages of 3D data through self-distillation. As a result, our proposed GGSD approach outperforms the existing open vocabulary 3D scene understanding methods by a large margin, as demonstrated by our experiments on both indoor and outdoor benchmark datasets.
Abstract:Thanks to the powerful generative capacity of diffusion models, recent years have witnessed rapid progress in human motion generation. Existing diffusion-based methods employ disparate network architectures and training strategies. The effect of the design of each component is still unclear. In addition, the iterative denoising process consumes considerable computational overhead, which is prohibitive for real-time scenarios such as virtual characters and humanoid robots. For this reason, we first conduct a comprehensive investigation into network architectures, training strategies, and inference processs. Based on the profound analysis, we tailor each component for efficient high-quality human motion generation. Despite the promising performance, the tailored model still suffers from foot skating which is an ubiquitous issue in diffusion-based solutions. To eliminate footskate, we identify foot-ground contact and correct foot motions along the denoising process. By organically combining these well-designed components together, we present StableMoFusion, a robust and efficient framework for human motion generation. Extensive experimental results show that our StableMoFusion performs favorably against current state-of-the-art methods. Project page: https://h-y1heng.github.io/StableMoFusion-page/
Abstract:Driven by powerful image diffusion models, recent research has achieved the automatic creation of 3D objects from textual or visual guidance. By performing score distillation sampling (SDS) iteratively across different views, these methods succeed in lifting 2D generative prior to the 3D space. However, such a 2D generative image prior bakes the effect of illumination and shadow into the texture. As a result, material maps optimized by SDS inevitably involve spurious correlated components. The absence of precise material definition makes it infeasible to relight the generated assets reasonably in novel scenes, which limits their application in downstream scenarios. In contrast, humans can effortlessly circumvent this ambiguity by deducing the material of the object from its appearance and semantics. Motivated by this insight, we propose MaterialSeg3D, a 3D asset material generation framework to infer underlying material from the 2D semantic prior. Based on such a prior model, we devise a mechanism to parse material in 3D space. We maintain a UV stack, each map of which is unprojected from a specific viewpoint. After traversing all viewpoints, we fuse the stack through a weighted voting scheme and then employ region unification to ensure the coherence of the object parts. To fuel the learning of semantics prior, we collect a material dataset, named Materialized Individual Objects (MIO), which features abundant images, diverse categories, and accurate annotations. Extensive quantitative and qualitative experiments demonstrate the effectiveness of our method.
Abstract:Due to its great application potential, large-scale scene generation has drawn extensive attention in academia and industry. Recent research employs powerful generative models to create desired scenes and achieves promising results. However, most of these methods represent the scene using 3D primitives (e.g. point cloud or radiance field) incompatible with the industrial pipeline, which leads to a substantial gap between academic research and industrial deployment. Procedural Controllable Generation (PCG) is an efficient technique for creating scalable and high-quality assets, but it is unfriendly for ordinary users as it demands profound domain expertise. To address these issues, we resort to using the large language model (LLM) to drive the procedural modeling. In this paper, we introduce a large-scale scene generation framework, SceneX, which can automatically produce high-quality procedural models according to designers' textual descriptions.Specifically, the proposed method comprises two components, PCGBench and PCGPlanner. The former encompasses an extensive collection of accessible procedural assets and thousands of hand-craft API documents. The latter aims to generate executable actions for Blender to produce controllable and precise 3D assets guided by the user's instructions. Our SceneX can generate a city spanning 2.5 km times 2.5 km with delicate layout and geometric structures, drastically reducing the time cost from several weeks for professional PCG engineers to just a few hours for an ordinary user. Extensive experiments demonstrated the capability of our method in controllable large-scale scene generation and editing, including asset placement and season translation.
Abstract:For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners. These requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify two key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. To address them, we propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we use LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. GS-LoRA is effective, parameter-efficient, data-efficient, and easy to implement. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that GS-LoRA manages to forget specific classes with minimal impact on other classes. Codes will be released on \url{https://github.com/bjzhb666/GS-LoRA}.
Abstract:3D Gaussian Splatting has emerged as an alternative 3D representation of Neural Radiance Fields (NeRFs), benefiting from its high-quality rendering results and real-time rendering speed. Considering the 3D Gaussian representation remains unparsed, it is necessary first to execute object segmentation within this domain. Subsequently, scene editing and collision detection can be performed, proving vital to a multitude of applications, such as virtual reality (VR), augmented reality (AR), game/movie production, etc. In this paper, we propose a novel approach to achieve object segmentation in 3D Gaussian via an interactive procedure without any training process and learned parameters. We refer to the proposed method as SA-GS, for Segment Anything in 3D Gaussians. Given a set of clicked points in a single input view, SA-GS can generalize SAM to achieve 3D consistent segmentation via the proposed multi-view mask generation and view-wise label assignment methods. We also propose a cross-view label-voting approach to assign labels from different views. In addition, in order to address the boundary roughness issue of segmented objects resulting from the non-negligible spatial sizes of 3D Gaussian located at the boundary, SA-GS incorporates the simple but effective Gaussian Decomposition scheme. Extensive experiments demonstrate that SA-GS achieves high-quality 3D segmentation results, which can also be easily applied for scene editing and collision detection tasks. Codes will be released soon.
Abstract:Indoor scene generation has attracted significant attention recently as it is crucial for applications of gaming, virtual reality, and interior design. Current indoor scene generation methods can produce reasonable room layouts but often lack diversity and realism. This is primarily due to the limited coverage of existing datasets, including only large furniture without tiny furnishings in daily life. To address these challenges, we propose FurniScene, a large-scale 3D room dataset with intricate furnishing scenes from interior design professionals. Specifically, the FurniScene consists of 11,698 rooms and 39,691 unique furniture CAD models with 89 different types, covering things from large beds to small teacups on the coffee table. To better suit fine-grained indoor scene layout generation, we introduce a novel Two-Stage Diffusion Scene Model (TSDSM) and conduct an evaluation benchmark for various indoor scene generation based on FurniScene. Quantitative and qualitative evaluations demonstrate the capability of our method to generate highly realistic indoor scenes. Our dataset and code will be publicly available soon.
Abstract:Masked visual modeling has attracted much attention due to its promising potential in learning generalizable representations. Typical approaches urge models to predict specific contents of masked tokens, which can be intuitively considered as teaching a student (the model) to solve given problems (predicting masked contents). Under such settings, the performance is highly correlated with mask strategies (the difficulty of provided problems). We argue that it is equally important for the model to stand in the shoes of a teacher to produce challenging problems by itself. Intuitively, patches with high values of reconstruction loss can be regarded as hard samples, and masking those hard patches naturally becomes a demanding reconstruction task. To empower the model as a teacher, we propose Hard Patches Mining (HPM), predicting patch-wise losses and subsequently determining where to mask. Technically, we introduce an auxiliary loss predictor, which is trained with a relative objective to prevent overfitting to exact loss values. Also, to gradually guide the training procedure, we propose an easy-to-hard mask strategy. Empirically, HPM brings significant improvements under both image and video benchmarks. Interestingly, solely incorporating the extra loss prediction objective leads to better representations, verifying the efficacy of determining where is hard to reconstruct. The code is available at https://github.com/Haochen-Wang409/HPM.