Refer to the report for detailed contributions
Abstract:This paper presents MetricGrids, a novel grid-based neural representation that combines elementary metric grids in various metric spaces to approximate complex nonlinear signals. While grid-based representations are widely adopted for their efficiency and scalability, the existing feature grids with linear indexing for continuous-space points can only provide degenerate linear latent space representations, and such representations cannot be adequately compensated to represent complex nonlinear signals by the following compact decoder. To address this problem while keeping the simplicity of a regular grid structure, our approach builds upon the standard grid-based paradigm by constructing multiple elementary metric grids as high-order terms to approximate complex nonlinearities, following the Taylor expansion principle. Furthermore, we enhance model compactness with hash encoding based on different sparsities of the grids to prevent detrimental hash collisions, and a high-order extrapolation decoder to reduce explicit grid storage requirements. experimental results on both 2D and 3D reconstructions demonstrate the superior fitting and rendering accuracy of the proposed method across diverse signal types, validating its robustness and generalizability. Code is available at https://github.com/wangshu31/MetricGrids}{https://github.com/wangshu31/MetricGrids.
Abstract:Monocular Semantic Scene Completion (MonoSSC) reconstructs and interprets 3D environments from a single image, enabling diverse real-world applications. However, existing methods are often constrained by the local receptive field of Convolutional Neural Networks (CNNs), making it challenging to handle the non-uniform distribution of projected points (Fig. \ref{fig:perspective}) and effectively reconstruct missing information caused by the 3D-to-2D projection. In this work, we introduce GA-MonoSSC, a hybrid architecture for MonoSSC that effectively captures global context in both the 2D image domain and 3D space. Specifically, we propose a Dual-Head Multi-Modality Encoder, which leverages a Transformer architecture to capture spatial relationships across all features in the 2D image domain, enabling more comprehensive 2D feature extraction. Additionally, we introduce the Frustum Mamba Decoder, built on the State Space Model (SSM), to efficiently capture long-range dependencies in 3D space. Furthermore, we propose a frustum reordering strategy within the Frustum Mamba Decoder to mitigate feature discontinuities in the reordered voxel sequence, ensuring better alignment with the scan mechanism of the State Space Model (SSM) for improved 3D representation learning. We conduct extensive experiments on the widely used Occ-ScanNet and NYUv2 datasets, demonstrating that our proposed method achieves state-of-the-art performance, validating its effectiveness. The code will be released upon acceptance.
Abstract:In recent years, learned image compression (LIC) methods have achieved significant performance improvements. However, obtaining a more compact latent representation and reducing the impact of quantization errors remain key challenges in the field of LIC. To address these challenges, we propose a feature extraction module, a feature refinement module, and a feature enhancement module. Our feature extraction module shuffles the pixels in the image, splits the resulting image into sub-images, and extracts coarse features from the sub-images. Our feature refinement module stacks the coarse features and uses an attention refinement block composed of concatenated three-dimensional convolution residual blocks to learn more compact latent features by exploiting correlations across channels, within sub-images (intra-sub-image correlations), and across sub-images (inter-sub-image correlations). Our feature enhancement module reduces information loss in the decoded features following quantization. We also propose a quantization error compensation module that mitigates the quantization mismatch between training and testing. Our four modules can be readily integrated into state-of-the-art LIC methods. Experiments show that combining our modules with Tiny-LIC outperforms existing LIC methods and image compression standards in terms of peak signal-to-noise ratio (PSNR) and multi-scale structural similarity (MS-SSIM) on the Kodak dataset and the CLIC dataset.
Abstract:The learned image compression (LIC) methods have already surpassed traditional techniques in compressing natural scene (NS) images. However, directly applying these methods to screen content (SC) images, which possess distinct characteristics such as sharp edges, repetitive patterns, embedded text and graphics, yields suboptimal results. This paper addresses three key challenges in SC image compression: learning compact latent features, adapting quantization step sizes, and the lack of large SC datasets. To overcome these challenges, we propose a novel compression method that employs a multi-frequency two-stage octave residual block (MToRB) for feature extraction, a cascaded triple-scale feature fusion residual block (CTSFRB) for multi-scale feature integration and a multi-frequency context interaction module (MFCIM) to reduce inter-frequency correlations. Additionally, we introduce an adaptive quantization module that learns scaled uniform noise for each frequency component, enabling flexible control over quantization granularity. Furthermore, we construct a large SC image compression dataset (SDU-SCICD10K), which includes over 10,000 images spanning basic SC images, computer-rendered images, and mixed NS and SC images from both PC and mobile platforms. Experimental results demonstrate that our approach significantly improves SC image compression performance, outperforming traditional standards and state-of-the-art learning-based methods in terms of peak signal-to-noise ratio (PSNR) and multi-scale structural similarity (MS-SSIM).
Abstract:Online learning to rank sequentially recommends a small list of items to users from a large candidate set and receives the users' click feedback. In many real-world scenarios, users browse the recommended list in order and click the first attractive item without checking the rest. Such behaviors are usually formulated as the cascade model. Many recent works study algorithms for cascading bandits, an online learning to rank framework in the cascade model. However, the performance of existing methods may drop significantly if part of the user feedback is adversarially corrupted (e.g., click fraud). In this work, we study how to resist adversarial corruptions in cascading bandits. We first formulate the ``\textit{Cascading Bandits with Adversarial Corruptions}" (CBAC) problem, which assumes that there is an adaptive adversary that may manipulate the user feedback. Then we propose two robust algorithms for this problem, which assume the corruption level is known and agnostic, respectively. We show that both algorithms can achieve logarithmic regret when the algorithm is not under attack, and the regret increases linearly with the corruption level. The experimental results also verify the robustness of our methods.
Abstract:Visualization recommendation aims to enable rapid visual analysis of massive datasets. In real-world scenarios, it is essential to quickly gather and comprehend user preferences to cover users from diverse backgrounds, including varying skill levels and analytical tasks. Previous approaches to personalized visualization recommendations are non-interactive and rely on initial user data for new users. As a result, these models cannot effectively explore options or adapt to real-time feedback. To address this limitation, we propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions. For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual combinatorial semi-bandit in the PVisRec setting. Theoretically, we show an improved overall regret bound with the same rank of time but an improved rank of action space. We further demonstrate the effectiveness of Hier-SUCB through extensive experiments where it is comparable to offline methods and outperforms other bandit algorithms in the setting of visualization recommendation.
Abstract:In this paper, we aim to address the unmet demand for automated prompting and enhanced human-model interactions of SAM and SAM2 for the sake of promoting their widespread clinical adoption. Specifically, we propose Proxy Prompt (PP), auto-generated by leveraging non-target data with a pre-annotated mask. We devise a novel 3-step context-selection strategy for adaptively selecting the most representative contextual information from non-target data via vision mamba and selective maps, empowering the guiding capability of non-target image-mask pairs for segmentation on target image/video data. To reinforce human-model interactions in PP, we further propose a contextual colorization module via a dual-reverse cross-attention to enhance interactions between target features and contextual-embedding with amplifying distinctive features of user-defined object(s). Via extensive evaluations, our method achieves state-of-the-art performance on four public datasets and yields comparable results with fully-trained models, even when trained with only 16 image masks.
Abstract:Olfactory perception plays a critical role in both human and organismal interactions, yet understanding of its underlying mechanisms and influencing factors remain insufficient. Molecular structures influence odor perception through intricate biochemical interactions, and accurately quantifying structure-odor relationships presents significant challenges. The Quantitative Structure-Odor Relationship (QSOR) task, which involves predicting the associations between molecular structures and their corresponding odors, seeks to address these challenges. To this end, we propose a method for QSOR, utilizing Graph Attention Networks to model molecular structures and capture both local and global features. Unlike conventional QSOR approaches reliant on predefined descriptors, our method leverages diverse molecular feature extraction techniques to automatically learn comprehensive representations. This integration enhances the model's capacity to handle complex molecular information, improves prediction accuracy. Our approach demonstrates clear advantages in QSOR prediction tasks, offering valuable insights into the application of deep learning in cheminformatics.
Abstract:Multimodal fake news detection has garnered significant attention due to its profound implications for social security. While existing approaches have contributed to understanding cross-modal consistency, they often fail to leverage modal-specific representations and explicit discrepant features. To address these limitations, we propose a Multimodal Inverse Attention Network (MIAN), a novel framework that explores intrinsic discriminative features based on news content to advance fake news detection. Specifically, MIAN introduces a hierarchical learning module that captures diverse intra-modal relationships through local-to-global and local-to-local interactions, thereby generating enhanced unimodal representations to improve the identification of fake news at the intra-modal level. Additionally, a cross-modal interaction module employs a co-attention mechanism to establish and model dependencies between the refined unimodal representations, facilitating seamless semantic integration across modalities. To explicitly extract inconsistency features, we propose an inverse attention mechanism that effectively highlights the conflicting patterns and semantic deviations introduced by fake news in both intra- and inter-modality. Extensive experiments on benchmark datasets demonstrate that MIAN significantly outperforms state-of-the-art methods, underscoring its pivotal contribution to advancing social security through enhanced multimodal fake news detection.
Abstract:Molecular odor prediction has great potential across diverse fields such as chemistry, pharmaceuticals, and environmental science, enabling the rapid design of new materials and enhancing environmental monitoring. However, current methods face two main challenges: First, existing models struggle with non-smooth objective functions and the complexity of mixed feature dimensions; Second, datasets suffer from severe label imbalance, which hampers model training, particularly in learning minority class labels. To address these issues, we introduce a novel feature mapping method and a molecular ensemble optimization loss function. By incorporating feature importance learning and frequency modulation, our model adaptively adjusts the contribution of each feature, efficiently capturing the intricate relationship between molecular structures and odor descriptors. Our feature mapping preserves feature independence while enhancing the model's efficiency in utilizing molecular features through frequency modulation. Furthermore, the proposed loss function dynamically adjusts label weights, improves structural consistency, and strengthens label correlations, effectively addressing data imbalance and label co-occurrence challenges. Experimental results show that our method significantly can improves the accuracy of molecular odor prediction across various deep learning models, demonstrating its promising potential in molecular structure representation and chemoinformatics.