Refer to the report for detailed contributions
Abstract:Online learning to rank sequentially recommends a small list of items to users from a large candidate set and receives the users' click feedback. In many real-world scenarios, users browse the recommended list in order and click the first attractive item without checking the rest. Such behaviors are usually formulated as the cascade model. Many recent works study algorithms for cascading bandits, an online learning to rank framework in the cascade model. However, the performance of existing methods may drop significantly if part of the user feedback is adversarially corrupted (e.g., click fraud). In this work, we study how to resist adversarial corruptions in cascading bandits. We first formulate the ``\textit{Cascading Bandits with Adversarial Corruptions}" (CBAC) problem, which assumes that there is an adaptive adversary that may manipulate the user feedback. Then we propose two robust algorithms for this problem, which assume the corruption level is known and agnostic, respectively. We show that both algorithms can achieve logarithmic regret when the algorithm is not under attack, and the regret increases linearly with the corruption level. The experimental results also verify the robustness of our methods.
Abstract:Visualization recommendation aims to enable rapid visual analysis of massive datasets. In real-world scenarios, it is essential to quickly gather and comprehend user preferences to cover users from diverse backgrounds, including varying skill levels and analytical tasks. Previous approaches to personalized visualization recommendations are non-interactive and rely on initial user data for new users. As a result, these models cannot effectively explore options or adapt to real-time feedback. To address this limitation, we propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions. For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual combinatorial semi-bandit in the PVisRec setting. Theoretically, we show an improved overall regret bound with the same rank of time but an improved rank of action space. We further demonstrate the effectiveness of Hier-SUCB through extensive experiments where it is comparable to offline methods and outperforms other bandit algorithms in the setting of visualization recommendation.
Abstract:In this paper, we aim to address the unmet demand for automated prompting and enhanced human-model interactions of SAM and SAM2 for the sake of promoting their widespread clinical adoption. Specifically, we propose Proxy Prompt (PP), auto-generated by leveraging non-target data with a pre-annotated mask. We devise a novel 3-step context-selection strategy for adaptively selecting the most representative contextual information from non-target data via vision mamba and selective maps, empowering the guiding capability of non-target image-mask pairs for segmentation on target image/video data. To reinforce human-model interactions in PP, we further propose a contextual colorization module via a dual-reverse cross-attention to enhance interactions between target features and contextual-embedding with amplifying distinctive features of user-defined object(s). Via extensive evaluations, our method achieves state-of-the-art performance on four public datasets and yields comparable results with fully-trained models, even when trained with only 16 image masks.
Abstract:Molecular odor prediction has great potential across diverse fields such as chemistry, pharmaceuticals, and environmental science, enabling the rapid design of new materials and enhancing environmental monitoring. However, current methods face two main challenges: First, existing models struggle with non-smooth objective functions and the complexity of mixed feature dimensions; Second, datasets suffer from severe label imbalance, which hampers model training, particularly in learning minority class labels. To address these issues, we introduce a novel feature mapping method and a molecular ensemble optimization loss function. By incorporating feature importance learning and frequency modulation, our model adaptively adjusts the contribution of each feature, efficiently capturing the intricate relationship between molecular structures and odor descriptors. Our feature mapping preserves feature independence while enhancing the model's efficiency in utilizing molecular features through frequency modulation. Furthermore, the proposed loss function dynamically adjusts label weights, improves structural consistency, and strengthens label correlations, effectively addressing data imbalance and label co-occurrence challenges. Experimental results show that our method significantly can improves the accuracy of molecular odor prediction across various deep learning models, demonstrating its promising potential in molecular structure representation and chemoinformatics.
Abstract:Multimodal fake news detection has garnered significant attention due to its profound implications for social security. While existing approaches have contributed to understanding cross-modal consistency, they often fail to leverage modal-specific representations and explicit discrepant features. To address these limitations, we propose a Multimodal Inverse Attention Network (MIAN), a novel framework that explores intrinsic discriminative features based on news content to advance fake news detection. Specifically, MIAN introduces a hierarchical learning module that captures diverse intra-modal relationships through local-to-global and local-to-local interactions, thereby generating enhanced unimodal representations to improve the identification of fake news at the intra-modal level. Additionally, a cross-modal interaction module employs a co-attention mechanism to establish and model dependencies between the refined unimodal representations, facilitating seamless semantic integration across modalities. To explicitly extract inconsistency features, we propose an inverse attention mechanism that effectively highlights the conflicting patterns and semantic deviations introduced by fake news in both intra- and inter-modality. Extensive experiments on benchmark datasets demonstrate that MIAN significantly outperforms state-of-the-art methods, underscoring its pivotal contribution to advancing social security through enhanced multimodal fake news detection.
Abstract:Olfactory perception plays a critical role in both human and organismal interactions, yet understanding of its underlying mechanisms and influencing factors remain insufficient. Molecular structures influence odor perception through intricate biochemical interactions, and accurately quantifying structure-odor relationships presents significant challenges. The Quantitative Structure-Odor Relationship (QSOR) task, which involves predicting the associations between molecular structures and their corresponding odors, seeks to address these challenges. To this end, we propose a method for QSOR, utilizing Graph Attention Networks to model molecular structures and capture both local and global features. Unlike conventional QSOR approaches reliant on predefined descriptors, our method leverages diverse molecular feature extraction techniques to automatically learn comprehensive representations. This integration enhances the model's capacity to handle complex molecular information, improves prediction accuracy. Our approach demonstrates clear advantages in QSOR prediction tasks, offering valuable insights into the application of deep learning in cheminformatics.
Abstract:One of the pivotal challenges in a multi-robot system is how to give attention to accuracy and efficiency while ensuring safety. Prior arts cannot strictly guarantee collision-free for an arbitrarily large number of robots or the results are considerably conservative. Smoothness of the avoidance trajectory also needs to be further optimized. This paper proposes an accelerationactuated simultaneous obstacle avoidance and trajectory tracking method for arbitrarily large teams of robots, that provides a nonconservative collision avoidance strategy and gives approaches for deadlock avoidance. We propose two ways of deadlock resolution, one involves incorporating an auxiliary velocity vector into the error function of the trajectory tracking module, which is proven to have no influence on global convergence of the tracking error. Furthermore, unlike the traditional methods that they address conflicts after a deadlock occurs, our decision-making mechanism avoids the near-zero velocity, which is much more safer and efficient in crowed environments. Extensive comparison show that the proposed method is superior to the existing studies when deployed in a large-scale robot system, with minimal invasiveness.
Abstract:Low-precision training is considered an effective strategy for reducing both training and downstream inference costs. Previous scaling laws for precision mainly focus on integer quantization, which pay less attention to the constituents in floating-point quantization and thus cannot well fit the LLM losses in this scenario. In contrast, while floating-point quantization training is more commonly implemented in production, the research on it has been relatively superficial. In this paper, we thoroughly explore the effects of floating-point quantization targets, exponent bits, mantissa bits, and the calculation granularity of the scaling factor in floating-point quantization training performance of LLM models. While presenting an accurate floating-point quantization unified scaling law, we also provide valuable suggestions for the community: (1) Exponent bits contribute slightly more to the model performance than mantissa bits. We provide the optimal exponent-mantissa bit ratio for different bit numbers, which is available for future reference by hardware manufacturers; (2) We discover the formation of the critical data size in low-precision LLM training. Too much training data exceeding the critical data size will inversely bring in degradation of LLM performance; (3) The optimal floating-point quantization precision is directly proportional to the computational power, but within a wide computational power range, we estimate that the best cost-performance precision lies between 4-8 bits.
Abstract:Discriminating the low-abundance hydroxylated proline from hydroxylated proline is crucial for monitoring diseases and eval-uating therapeutic outcomes that require single-molecule sensors. While the plasmonic nanopore sensor can detect the hydrox-ylation with single-molecule sensitivity by surface enhanced Raman spectroscopy (SERS), it suffers from intrinsic fluctuations of single-molecule signals as well as strong interference from citrates. Here, we used the occurrence frequency histogram of the single-molecule SERS peaks to extract overall dataset spectral features, overcome the signal fluctuations and investigate the citrate-replaced plasmonic nanopore sensors for clean and distinguishable signals of proline and hydroxylated proline. By ligand exchange of the citrates by analyte molecules, the representative peaks of citrates decreased with incubation time, prov-ing occupation of the plasmonic hot spot by the analytes. As a result, the discrimination of the single-molecule SERS signals of proline and hydroxylated proline was possible with the convolutional neural network model with 96.6% accuracy.
Abstract:Conditional independence (CI) testing is a fundamental task in modern statistics and machine learning. The conditional randomization test (CRT) was recently introduced to test whether two random variables, $X$ and $Y$, are conditionally independent given a potentially high-dimensional set of random variables, $Z$. The CRT operates exceptionally well under the assumption that the conditional distribution $X|Z$ is known. However, since this distribution is typically unknown in practice, accurately approximating it becomes crucial. In this paper, we propose using conditional diffusion models (CDMs) to learn the distribution of $X|Z$. Theoretically and empirically, it is shown that CDMs closely approximate the true conditional distribution. Furthermore, CDMs offer a more accurate approximation of $X|Z$ compared to GANs, potentially leading to a CRT that performs better than those based on GANs. To accommodate complex dependency structures, we utilize a computationally efficient classifier-based conditional mutual information (CMI) estimator as our test statistic. The proposed testing procedure performs effectively without requiring assumptions about specific distribution forms or feature dependencies, and is capable of handling mixed-type conditioning sets that include both continuous and discrete variables. Theoretical analysis shows that our proposed test achieves a valid control of the type I error. A series of experiments on synthetic data demonstrates that our new test effectively controls both type-I and type-II errors, even in high dimensional scenarios.