Abstract:This report examines the effect of mixed traffic, specifically the variation in robot vehicle (RV) penetration rates, on the fundamental diagrams at unsignalized intersections. Through a series of simulations across four distinct intersections, the relationship between traffic flow characteristics were analyzed. The RV penetration rates were varied from 0% to 100% in increments of 25%. The study reveals that while the presence of RVs influences traffic dynamics, the impact on flow and speed is not uniform across different levels of RV penetration. The fundamental diagrams indicate that intersections may experience an increase in capacity with varying levels of RVs, but this trend does not consistently hold as RV penetration approaches 100%. The variability observed across intersections suggests that local factors possibly influence the traffic flow characteristics. These findings highlight the complexity of integrating RVs into the existing traffic system and underscore the need for intersection-specific traffic management strategies to accommodate the transition towards increased RV presence.
Abstract:Accurate vehicle trajectory prediction is crucial for ensuring safe and efficient autonomous driving. This work explores the integration of Transformer based model with Long Short-Term Memory (LSTM) based technique to enhance spatial and temporal feature learning in vehicle trajectory prediction. Here, a hybrid model that combines LSTMs for temporal encoding with a Transformer encoder for capturing complex interactions between vehicles is proposed. Spatial trajectory features of the neighboring vehicles are processed and goes through a masked scatter mechanism in a grid based environment, which is then combined with temporal trajectory of the vehicles. This combined trajectory data are learned by sequential LSTM encoding and Transformer based attention layers. The proposed model is benchmarked against predecessor LSTM based methods, including STA-LSTM, SA-LSTM, CS-LSTM, and NaiveLSTM. Our results, while not outperforming it's predecessor, demonstrate the potential of integrating Transformers with LSTM based technique to build interpretable trajectory prediction model. Future work will explore alternative architectures using Transformer applications to further enhance performance. This study provides a promising direction for improving trajectory prediction models by leveraging transformer based architectures, paving the way for more robust and interpretable vehicle trajectory prediction system.
Abstract:Extreme weather events and other vulnerabilities are causing blackouts with increasing frequency, disrupting traffic control systems and posing significant challenges to urban mobility. To address this growing concern, we introduce \model{}, a naturalistic driving dataset collected during blackouts at complex intersections. Beacon provides detailed traffic data from two unsignalized intersections in Memphis, TN, including timesteps, origin, and destination lanes for each vehicle over four hours. We analyze traffic demand, vehicle trajectories, and density across different scenarios. We also use the dataset to reconstruct unsignalized, signalized and mixed traffic conditions, demonstrating its utility for benchmarking traffic reconstruction techniques and control methods. To the best of our knowledge, Beacon could be the first public available traffic dataset that captures naturalistic driving behaviors at complex intersections.
Abstract:Managing mixed traffic comprising human-driven and robot vehicles (RVs) across large-scale networks presents unique challenges beyond single-intersection control. This paper proposes a reinforcement learning framework for coordinating mixed traffic across multiple interconnected intersections. Our key contribution is a neighbor-aware reward mechanism that enables RVs to maintain balanced distribution across the network while optimizing local intersection efficiency. We evaluate our approach using a real-world network, demonstrating its effectiveness in managing realistic traffic patterns. Results show that our method reduces average waiting times by 39.2% compared to the state-of-the-art single-intersection control policy and 79.8% compared to traditional traffic signals. The framework's ability to coordinate traffic across multiple intersections while maintaining balanced RV distribution provides a foundation for deploying learning-based solutions in urban traffic systems.
Abstract:Autonomous driving has rapidly developed and shown promising performance due to recent advances in hardware and deep learning techniques. High-quality datasets are fundamental for developing reliable autonomous driving algorithms. Previous dataset surveys either focused on a limited number or lacked detailed investigation of dataset characteristics. Besides, we analyze the annotation processes, existing labeling tools, and the annotation quality of datasets, showing the importance of establishing a standard annotation pipeline. On the other hand, we thoroughly analyze the impact of geographical and adversarial environmental conditions on the performance of autonomous driving systems. Moreover, we exhibit the data distribution of several vital datasets and discuss their pros and cons accordingly. Additionally, this paper provides a comprehensive analysis of publicly available traffic simulators. In addition to informing about traffic datasets, it is also the goal of this paper to provide context and information on the current capabilities of traffic simulators for their specific contributions to autonomous vehicle simulation and development. Furthermore, this paper discusses future directions and the increasing importance of synthetic data generation in simulators to enhance the training and creation of effective simulations. Finally, we discuss the current challenges and the development trend of future autonomous driving datasets.
Abstract:Microscopic traffic simulation plays a crucial role in transportation engineering by providing insights into individual vehicle behavior and overall traffic flow. However, creating a realistic simulator that accurately replicates human driving behaviors in various traffic conditions presents significant challenges. Traditional simulators relying on heuristic models often fail to deliver accurate simulations due to the complexity of real-world traffic environments. Due to the covariate shift issue, existing imitation learning-based simulators often fail to generate stable long-term simulations. In this paper, we propose a novel approach called learner-aware supervised imitation learning to address the covariate shift problem in multi-agent imitation learning. By leveraging a variational autoencoder simultaneously modeling the expert and learner state distribution, our approach augments expert states such that the augmented state is aware of learner state distribution. Our method, applied to urban traffic simulation, demonstrates significant improvements over existing state-of-the-art baselines in both short-term microscopic and long-term macroscopic realism when evaluated on the real-world dataset pNEUMA.
Abstract:Human-driven vehicles (HVs) exhibit complex and diverse behaviors. Accurately modeling such behavior is crucial for validating Robot Vehicles (RVs) in simulation and realizing the potential of mixed traffic control. However, existing approaches like parameterized models and data-driven techniques struggle to capture the full complexity and diversity. To address this, in this work, we introduce CARL, a hybrid technique combining imitation learning for close proximity car-following and probabilistic sampling for larger headways. We also propose two classes of RL-based RVs: a safety RV focused on maximizing safety and an efficiency RV focused on maximizing efficiency. Our experiments show that the safety RV increases Time-to-Collision above the critical 4 second threshold and reduces Deceleration Rate to Avoid a Crash by up to 80%, while the efficiency RV achieves improvements in throughput of up to 49%. These results demonstrate the effectiveness of CARL in enhancing both safety and efficiency in mixed traffic.
Abstract:The management of mixed traffic that consists of robot vehicles (RVs) and human-driven vehicles (HVs) at complex intersections presents a multifaceted challenge. Traditional signal controls often struggle to adapt to dynamic traffic conditions and heterogeneous vehicle types. Recent advancements have turned to strategies based on reinforcement learning (RL), leveraging its model-free nature, real-time operation, and generalizability over different scenarios. We introduce a hierarchical RL framework to manage mixed traffic through precise longitudinal and lateral control of RVs. Our proposed hierarchical framework combines the state-of-the-art mixed traffic control algorithm as a high level decision maker to improve the performance and robustness of the whole system. Our experiments demonstrate that the framework can reduce the average waiting time by up to 54% compared to the state-of-the-art mixed traffic control method. When the RV penetration rate exceeds 60%, our technique consistently outperforms conventional traffic signal control programs in terms of the average waiting time for all vehicles at the intersection.
Abstract:Electric vertical-takeoff and landing (eVTOL) aircraft, recognized for their maneuverability and flexibility, offer a promising alternative to our transportation system. However, the operational effectiveness of these aircraft faces many challenges, such as the delicate balance between energy and time efficiency, stemming from unpredictable environmental factors, including wind fields. Mathematical modeling-based approaches have been adopted to plan aircraft flight path in urban wind fields with the goal to save energy and time costs. While effective, they are limited in adapting to dynamic and complex environments. To optimize energy and time efficiency in eVTOL's flight through dynamic wind fields, we introduce a novel path planning method leveraging deep reinforcement learning. We assess our method with extensive experiments, comparing it to Dijkstra's algorithm -- the theoretically optimal approach for determining shortest paths in a weighted graph, where weights represent either energy or time cost. The results show that our method achieves a graceful balance between energy and time efficiency, closely resembling the theoretically optimal values for both objectives.
Abstract:Human-driven vehicles can amplify naturally occurring perturbations in traffic, leading to congestion and consequently increased fuel consumption, higher collision risks, and reduced capacity utilization. While previous research has highlighted that a fraction of Robot Vehicles (RVs) can mitigate these issues, they often rely on simulations with simplistic, model-based Human-driven Vehicles (HVs) during car-following scenarios. Diverging from this trend, in this study, we analyze real-world human driving trajectories, extracting a wide range of acceleration behaviors during car-following. We then incorporate these behaviors in simulation where RVs from prior studies are employed to mitigate congestion, and evaluate their safety, efficiency, and stability. Further, we also introduce a reinforcement learning based RV that utilizes a congestion stage classifier neural network to optimize either "safety+stability" or "efficiency" in the presence of the diverse human driving behaviors. We evaluate the proposed RVs in two different mixed traffic control environments at various densities, configurations, and penetration rates and compare with the existing RVs.