Abstract:Microscopic traffic simulation plays a crucial role in transportation engineering by providing insights into individual vehicle behavior and overall traffic flow. However, creating a realistic simulator that accurately replicates human driving behaviors in various traffic conditions presents significant challenges. Traditional simulators relying on heuristic models often fail to deliver accurate simulations due to the complexity of real-world traffic environments. Due to the covariate shift issue, existing imitation learning-based simulators often fail to generate stable long-term simulations. In this paper, we propose a novel approach called learner-aware supervised imitation learning to address the covariate shift problem in multi-agent imitation learning. By leveraging a variational autoencoder simultaneously modeling the expert and learner state distribution, our approach augments expert states such that the augmented state is aware of learner state distribution. Our method, applied to urban traffic simulation, demonstrates significant improvements over existing state-of-the-art baselines in both short-term microscopic and long-term macroscopic realism when evaluated on the real-world dataset pNEUMA.
Abstract:Human-driven vehicles (HVs) exhibit complex and diverse behaviors. Accurately modeling such behavior is crucial for validating Robot Vehicles (RVs) in simulation and realizing the potential of mixed traffic control. However, existing approaches like parameterized models and data-driven techniques struggle to capture the full complexity and diversity. To address this, in this work, we introduce CARL, a hybrid technique combining imitation learning for close proximity car-following and probabilistic sampling for larger headways. We also propose two classes of RL-based RVs: a safety RV focused on maximizing safety and an efficiency RV focused on maximizing efficiency. Our experiments show that the safety RV increases Time-to-Collision above the critical 4 second threshold and reduces Deceleration Rate to Avoid a Crash by up to 80%, while the efficiency RV achieves improvements in throughput of up to 49%. These results demonstrate the effectiveness of CARL in enhancing both safety and efficiency in mixed traffic.
Abstract:Electric vertical-takeoff and landing (eVTOL) aircraft, recognized for their maneuverability and flexibility, offer a promising alternative to our transportation system. However, the operational effectiveness of these aircraft faces many challenges, such as the delicate balance between energy and time efficiency, stemming from unpredictable environmental factors, including wind fields. Mathematical modeling-based approaches have been adopted to plan aircraft flight path in urban wind fields with the goal to save energy and time costs. While effective, they are limited in adapting to dynamic and complex environments. To optimize energy and time efficiency in eVTOL's flight through dynamic wind fields, we introduce a novel path planning method leveraging deep reinforcement learning. We assess our method with extensive experiments, comparing it to Dijkstra's algorithm -- the theoretically optimal approach for determining shortest paths in a weighted graph, where weights represent either energy or time cost. The results show that our method achieves a graceful balance between energy and time efficiency, closely resembling the theoretically optimal values for both objectives.
Abstract:The management of mixed traffic that consists of robot vehicles (RVs) and human-driven vehicles (HVs) at complex intersections presents a multifaceted challenge. Traditional signal controls often struggle to adapt to dynamic traffic conditions and heterogeneous vehicle types. Recent advancements have turned to strategies based on reinforcement learning (RL), leveraging its model-free nature, real-time operation, and generalizability over different scenarios. We introduce a hierarchical RL framework to manage mixed traffic through precise longitudinal and lateral control of RVs. Our proposed hierarchical framework combines the state-of-the-art mixed traffic control algorithm as a high level decision maker to improve the performance and robustness of the whole system. Our experiments demonstrate that the framework can reduce the average waiting time by up to 54% compared to the state-of-the-art mixed traffic control method. When the RV penetration rate exceeds 60%, our technique consistently outperforms conventional traffic signal control programs in terms of the average waiting time for all vehicles at the intersection.
Abstract:Human-driven vehicles can amplify naturally occurring perturbations in traffic, leading to congestion and consequently increased fuel consumption, higher collision risks, and reduced capacity utilization. While previous research has highlighted that a fraction of Robot Vehicles (RVs) can mitigate these issues, they often rely on simulations with simplistic, model-based Human-driven Vehicles (HVs) during car-following scenarios. Diverging from this trend, in this study, we analyze real-world human driving trajectories, extracting a wide range of acceleration behaviors during car-following. We then incorporate these behaviors in simulation where RVs from prior studies are employed to mitigate congestion, and evaluate their safety, efficiency, and stability. Further, we also introduce a reinforcement learning based RV that utilizes a congestion stage classifier neural network to optimize either "safety+stability" or "efficiency" in the presence of the diverse human driving behaviors. We evaluate the proposed RVs in two different mixed traffic control environments at various densities, configurations, and penetration rates and compare with the existing RVs.
Abstract:Greenhouse gas emissions have dramatically risen since the early 1900s with U.S. transportation generating 28% of the U.S' emissions. As such, there is interest in reducing transportation-related emissions. Specifically, sustainability research has sprouted around signalized intersections as intersections allow different streams of traffic to cross and change directions. Recent research has developed mixed traffic control eco-driving strategies at signalized intersections to decrease emissions. However, the inherent structure of a signalized intersection generates increased emissions by creating frequent acceleration/deceleration events, excessive idling from traffic congestion, and stop-and-go waves. Thus, we believe unsignalized intersections hold potential for further sustainability improvements. In this work, we provide an emissions analysis on unsignalized intersections with complex, real-world topologies and traffic demands where mixed traffic control strategies are employed by robot vehicles (RVs) to reduce waiting times and congestion. We find with at least 10% RV penetration rate, RVs generate less fuel consumption and NOx emissions than signalized intersections by up to 27% and 28%, respectively. With at least 30% RVs, CO and HC emissions are reduced by up to 42% and 43%, respectively. Additionally, RVs can reduce emissions across the whole network despite only employing their strategies at the intersections.
Abstract:Controlling and coordinating urban traffic flow through robot vehicles is emerging as a novel transportation paradigm for the future. While this approach garners growing attention from researchers and practitioners, effectively managing and coordinating large-scale mixed traffic remains a challenge. We introduce an effective framework for large-scale mixed traffic control via privacy-preserving crowdsourcing and dynamic vehicle routing. Our framework consists of three modules: a privacy-protecting crowdsensing method, a graph propagation-based traffic forecasting method, and a privacy-preserving route selection mechanism. We evaluate our framework using a real-world road network. The results show that our framework accurately forecasts traffic flow, efficiently mitigates network-wide RV shortage issue, and coordinates large-scale mixed traffic. Compared to other baseline methods, our framework not only reduces the RV shortage issue up to 69.4% but also reduces the average waiting time of all vehicles in the network up to 27%.
Abstract:Early detection of inflammatory arthritis (IA) is critical to efficient and accurate hospital referral triage for timely treatment and preventing the deterioration of the IA disease course, especially under limited healthcare resources. The manual assessment process is the most common approach in practice for the early detection of IA, but it is extremely labor-intensive and inefficient. A large amount of clinical information needs to be assessed for every referral from General Practice (GP) to the hospitals. Machine learning shows great potential in automating repetitive assessment tasks and providing decision support for the early detection of IA. However, most machine learning-based methods for IA detection rely on blood testing results. But in practice, blood testing data is not always available at the point of referrals, so we need methods to leverage multimodal data such as semi-structured and unstructured data for early detection of IA. In this research, we present fusion and ensemble learning-based methods using multimodal data to assist decision-making in the early detection of IA, and a conformal prediction-based method to quantify the uncertainty of the prediction and detect any unreliable predictions. To the best of our knowledge, our study is the first attempt to utilize multimodal data to support the early detection of IA from GP referrals.
Abstract:The surge in Reinforcement Learning (RL) applications in Intelligent Transportation Systems (ITS) has contributed to its growth as well as highlighted key challenges. However, defining objectives of RL agents in traffic control and management tasks, as well as aligning policies with these goals through an effective formulation of Markov Decision Process (MDP), can be challenging and often require domain experts in both RL and ITS. Recent advancements in Large Language Models (LLMs) such as GPT-4 highlight their broad general knowledge, reasoning capabilities, and commonsense priors across various domains. In this work, we conduct a large-scale user study involving 70 participants to investigate whether novices can leverage ChatGPT to solve complex mixed traffic control problems. Three environments are tested, including ring road, bottleneck, and intersection. We find ChatGPT has mixed results. For intersection and bottleneck, ChatGPT increases number of successful policies by 150% and 136% compared to solely beginner capabilities, with some of them even outperforming experts. However, ChatGPT does not provide consistent improvements across all scenarios.
Abstract:A realistic long-term microscopic traffic simulator is necessary for understanding how microscopic changes affect traffic patterns at a larger scale. Traditional simulators that model human driving behavior with heuristic rules often fail to achieve accurate simulations due to real-world traffic complexity. To overcome this challenge, researchers have turned to neural networks, which are trained through imitation learning from human driver demonstrations. However, existing learning-based microscopic simulators often fail to generate stable long-term simulations due to the \textit{covariate shift} issue. To address this, we propose a history-masked multi-agent imitation learning method that removes all vehicles' historical trajectory information and applies perturbation to their current positions during learning. We apply our approach specifically to the urban traffic simulation problem and evaluate it on the real-world large-scale pNEUMA dataset, achieving better short-term microscopic and long-term macroscopic similarity to real-world data than state-of-the-art baselines.