Abstract:The rapid growth of the financial sector and the rising focus on Environmental, Social, and Governance (ESG) considerations highlight the need for advanced NLP tools. However, open-source LLMs proficient in both finance and ESG domains remain scarce. To address this gap, we introduce SusGen-30K, a category-balanced dataset comprising seven financial NLP tasks and ESG report generation, and propose TCFD-Bench, a benchmark for evaluating sustainability report generation. Leveraging this dataset, we developed SusGen-GPT, a suite of models achieving state-of-the-art performance across six adapted and two off-the-shelf tasks, trailing GPT-4 by only 2% despite using 7-8B parameters compared to GPT-4's 1,700B. Based on this, we propose the SusGen system, integrated with Retrieval-Augmented Generation (RAG), to assist in sustainability report generation. This work demonstrates the efficiency of our approach, advancing research in finance and ESG.
Abstract:3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness for novel view synthesis (NVS). However, the 3DGS model tends to overfit when trained with sparse posed views, limiting its generalization capacity for broader pose variations. In this paper, we alleviate the overfitting problem by introducing a self-ensembling Gaussian Splatting (SE-GS) approach. We present two Gaussian Splatting models named the $\mathbf{\Sigma}$-model and the $\mathbf{\Delta}$-model. The $\mathbf{\Sigma}$-model serves as the primary model that generates novel-view images during inference. At the training stage, the $\mathbf{\Sigma}$-model is guided away from specific local optima by an uncertainty-aware perturbing strategy. We dynamically perturb the $\mathbf{\Delta}$-model based on the uncertainties of novel-view renderings across different training steps, resulting in diverse temporal models sampled from the Gaussian parameter space without additional training costs. The geometry of the $\mathbf{\Sigma}$-model is regularized by penalizing discrepancies between the $\mathbf{\Sigma}$-model and the temporal samples. Therefore, our SE-GS conducts an effective and efficient regularization across a large number of Gaussian Splatting models, resulting in a robust ensemble, the $\mathbf{\Sigma}$-model. Experimental results on the LLFF, Mip-NeRF360, DTU, and MVImgNet datasets show that our approach improves NVS quality with few-shot training views, outperforming existing state-of-the-art methods. The code is released at https://github.com/sailor-z/SE-GS.
Abstract:Team Coordination on Graphs with Risky Edges (\textsc{tcgre}) is a recently proposed problem, in which robots find paths to their goals while considering possible coordination to reduce overall team cost. However, \textsc{tcgre} assumes that the \emph{entire} environment is available to a \emph{homogeneous} robot team with \emph{ubiquitous} communication. In this paper, we study an extended version of \textsc{tcgre}, called \textsc{hpr-tcgre}, with three relaxations: Heterogeneous robots, Partial observability, and Realistic communication. To this end, we form a new combinatorial optimization problem on top of \textsc{tcgre}. After analysis, we divide it into two sub-problems, one for robots moving individually, another for robots in groups, depending on their communication availability. Then, we develop an algorithm that exploits real-time partial maps to solve local shortest path(s) problems, with a A*-like sub-goal(s) assignment mechanism that explores potential coordination opportunities for global interests. Extensive experiments indicate that our algorithm is able to produce team coordination behaviors in order to reduce overall cost even with our three relaxations.
Abstract:Model Inversion (MI) attacks aim at leveraging the output information of target models to reconstruct privacy-sensitive training data, raising widespread concerns on privacy threats of Deep Neural Networks (DNNs). Unfortunately, in tandem with the rapid evolution of MI attacks, the lack of a comprehensive, aligned, and reliable benchmark has emerged as a formidable challenge. This deficiency leads to inadequate comparisons between different attack methods and inconsistent experimental setups. In this paper, we introduce the first practical benchmark for model inversion attacks and defenses to address this critical gap, which is named \textit{MIBench}. This benchmark serves as an extensible and reproducible modular-based toolbox and currently integrates a total of 16 state-of-the-art attack and defense methods. Moreover, we furnish a suite of assessment tools encompassing 9 commonly used evaluation protocols to facilitate standardized and fair evaluation and analysis. Capitalizing on this foundation, we conduct extensive experiments from multiple perspectives to holistically compare and analyze the performance of various methods across different scenarios, which overcomes the misalignment issues and discrepancy prevalent in previous works. Based on the collected attack methods and defense strategies, we analyze the impact of target resolution, defense robustness, model predictive power, model architectures, transferability and loss function. Our hope is that this \textit{MIBench} could provide a unified, practical and extensible toolbox and is widely utilized by researchers in the field to rigorously test and compare their novel methods, ensuring equitable evaluations and thereby propelling further advancements in the future development.
Abstract:Recently, there has been a revived interest in system neuroscience causation models due to their unique capability to unravel complex relationships in multi-scale brain networks. In this paper, our goal is to verify the feasibility and effectiveness of using a causality-based approach for fMRI fingerprinting. Specifically, we propose an innovative method that utilizes the causal dynamics activities of the brain to identify the unique cognitive patterns of individuals (e.g., subject fingerprint) and fMRI tasks (e.g., task fingerprint). The key novelty of our approach stems from the development of a two-timescale linear state-space model to extract 'spatio-temporal' (aka causal) signatures from an individual's fMRI time series data. To the best of our knowledge, we pioneer and subsequently quantify, in this paper, the concept of 'causal fingerprint.' Our method is well-separated from other fingerprint studies as we quantify fingerprints from a cause-and-effect perspective, which are then incorporated with a modal decomposition and projection method to perform subject identification and a GNN-based (Graph Neural Network) model to perform task identification. Finally, we show that the experimental results and comparisons with non-causality-based methods demonstrate the effectiveness of the proposed methods. We visualize the obtained causal signatures and discuss their biological relevance in light of the existing understanding of brain functionalities. Collectively, our work paves the way for further studies on causal fingerprints with potential applications in both healthy controls and neurodegenerative diseases.
Abstract:This paper presents a game theoretic formulation of a graph traversal problem, with applications to robots moving through hazardous environments in the presence of an adversary, as in military and security applications. The blue team of robots moves in an environment modeled by a time-varying graph, attempting to reach some goal with minimum cost, while the red team controls how the graph changes to maximize the cost. The problem is formulated as a stochastic game, so that Nash equilibrium strategies can be computed numerically. Bounds are provided for the game value, with a guarantee that it solves the original problem. Numerical simulations demonstrate the results and the effectiveness of this method, particularly showing the benefit of mixing actions for both players, as well as beneficial coordinated behavior, where blue robots split up and/or synchronize to traverse risky edges.
Abstract:Reinforcement Learning from Human Feedback (RLHF) is an effective approach for aligning language models to human preferences. Central to RLHF is learning a reward function for scoring human preferences. Two main approaches for learning a reward model are 1) training an EXplicit Reward Model (EXRM) as in RLHF, and 2) using an implicit reward learned from preference data through methods such as Direct Preference Optimization (DPO). Prior work has shown that the implicit reward model of DPO (denoted as DPORM) can approximate an EXRM in the limit. DPORM's effectiveness directly implies the optimality of the learned policy, and also has practical implication for LLM alignment methods including iterative DPO. However, it is unclear how well DPORM empirically matches the performance of EXRM. This work studies the accuracy at distinguishing preferred and rejected answers for both DPORM and EXRM. Our findings indicate that even though DPORM fits the training dataset comparably, it generalizes less effectively than EXRM, especially when the validation datasets contain distribution shifts. Across five out-of-distribution settings, DPORM has a mean drop in accuracy of 3% and a maximum drop of 7%. These findings highlight that DPORM has limited generalization ability and substantiates the integration of an explicit reward model in iterative DPO approaches.
Abstract:Food image composition requires the use of existing dish images and background images to synthesize a natural new image, while diffusion models have made significant advancements in image generation, enabling the construction of end-to-end architectures that yield promising results. However, existing diffusion models face challenges in processing and fusing information from multiple images and lack access to high-quality publicly available datasets, which prevents the application of diffusion models in food image composition. In this paper, we introduce a large-scale, high-quality food image composite dataset, FC22k, which comprises 22,000 foreground, background, and ground truth ternary image pairs. Additionally, we propose a novel food image composition method, Foodfusion, which leverages the capabilities of the pre-trained diffusion models and incorporates a Fusion Module for processing and integrating foreground and background information. This fused information aligns the foreground features with the background structure by merging the global structural information at the cross-attention layer of the denoising UNet. To further enhance the content and structure of the background, we also integrate a Content-Structure Control Module. Extensive experiments demonstrate the effectiveness and scalability of our proposed method.
Abstract:Multi-modal brain tumor segmentation typically involves four magnetic resonance imaging (MRI) modalities, while incomplete modalities significantly degrade performance. Existing solutions employ explicit or implicit modality adaptation, aligning features across modalities or learning a fused feature robust to modality incompleteness. They share a common goal of encouraging each modality to express both itself and the others. However, the two expression abilities are entangled as a whole in a seamless feature space, resulting in prohibitive learning burdens. In this paper, we propose DeMoSeg to enhance the modality adaptation by Decoupling the task of representing the ego and other Modalities for robust incomplete multi-modal Segmentation. The decoupling is super lightweight by simply using two convolutions to map each modality onto four feature sub-spaces. The first sub-space expresses itself (Self-feature), while the remaining sub-spaces substitute for other modalities (Mutual-features). The Self- and Mutual-features interactively guide each other through a carefully-designed Channel-wised Sparse Self-Attention (CSSA). After that, a Radiologist-mimic Cross-modality expression Relationships (RCR) is introduced to have available modalities provide Self-feature and also `lend' their Mutual-features to compensate for the absent ones by exploiting the clinical prior knowledge. The benchmark results on BraTS2020, BraTS2018 and BraTS2015 verify the DeMoSeg's superiority thanks to the alleviated modality adaptation difficulty. Concretely, for BraTS2020, DeMoSeg increases Dice by at least 0.92%, 2.95% and 4.95% on whole tumor, tumor core and enhanced tumor regions, respectively, compared to other state-of-the-arts. Codes are at https://github.com/kk42yy/DeMoSeg
Abstract:Deep learning has gained significant attention in remote sensing, especially in pixel- or patch-level applications. Despite initial attempts to integrate deep learning into object-based image analysis (OBIA), its full potential remains largely unexplored. In this article, as OBIA usage becomes more widespread, we conducted a comprehensive review and expansion of its task subdomains, with or without the integration of deep learning. Furthermore, we have identified and summarized five prevailing strategies to address the challenge of deep learning's limitations in directly processing unstructured object data within OBIA, and this review also recommends some important future research directions. Our goal with these endeavors is to inspire more exploration in this fascinating yet overlooked area and facilitate the integration of deep learning into OBIA processing workflows.