Abstract:In this work, we propose a high-voltage, high-frequency control circuit for the untethered applications of dielectric elastomer actuators (DEAs). The circuit board leverages low-voltage resistive components connected in series to control voltages of up to 1.8 kV within a compact size, suitable for frequencies ranging from 0 to 1 kHz. A single-channel control board weighs only 2.5 g. We tested the performance of the control circuit under different load conditions and power supplies. Based on this control circuit, along with a commercial miniature high-voltage power converter, we construct an untethered crawling robot driven by a cylindrical DEA. The 42-g untethered robots successfully obtained crawling locomotion on a bench and within a pipeline at a driving frequency of 15 Hz, while simultaneously transmitting real-time video data via an onboard camera and antenna. Our work provides a practical way to use low-voltage control electronics to achieve the untethered driving of DEAs, and therefore portable and wearable devices.
Abstract:Advances in data assimilation (DA) methods have greatly improved the accuracy of Earth system predictions. To fuse multi-source data and reconstruct the nonlinear evolution missing from observations, geoscientists are developing future-oriented DA methods. In this paper, we redesign a purely data-driven latent space DA framework (DeepDA) that employs a generative artificial intelligence model to capture the nonlinear evolution in sea surface temperature. Under variational constraints, DeepDA embedded with nonlinear features can effectively fuse heterogeneous data. The results show that DeepDA remains highly stable in capturing and generating nonlinear evolutions even when a large amount of observational information is missing. It can be found that when only 10% of the observation information is available, the error increase of DeepDA does not exceed 40%. Furthermore, DeepDA has been shown to be robust in the fusion of real observations and ensemble simulations. In particular, this paper provides a mechanism analysis of the nonlinear evolution generated by DeepDA from the perspective of physical patterns, which reveals the inherent explainability of our DL model in capturing multi-scale ocean signals.