Abstract:Advances in data assimilation (DA) methods have greatly improved the accuracy of Earth system predictions. To fuse multi-source data and reconstruct the nonlinear evolution missing from observations, geoscientists are developing future-oriented DA methods. In this paper, we redesign a purely data-driven latent space DA framework (DeepDA) that employs a generative artificial intelligence model to capture the nonlinear evolution in sea surface temperature. Under variational constraints, DeepDA embedded with nonlinear features can effectively fuse heterogeneous data. The results show that DeepDA remains highly stable in capturing and generating nonlinear evolutions even when a large amount of observational information is missing. It can be found that when only 10% of the observation information is available, the error increase of DeepDA does not exceed 40%. Furthermore, DeepDA has been shown to be robust in the fusion of real observations and ensemble simulations. In particular, this paper provides a mechanism analysis of the nonlinear evolution generated by DeepDA from the perspective of physical patterns, which reveals the inherent explainability of our DL model in capturing multi-scale ocean signals.
Abstract:ASR model deployment environment is ever-changing, and the incoming speech can be switched across different domains during a session. This brings a challenge for effective domain adaptation when only target domain text data is available, and our objective is to obtain obviously improved performance on the target domain while the performance on the general domain is less undermined. In this paper, we propose an adaptive LM fusion approach called internal language model estimation based adaptive domain adaptation (ILME-ADA). To realize such an ILME-ADA, an interpolated log-likelihood score is calculated based on the maximum of the scores from the internal LM and the external LM (ELM) respectively. We demonstrate the efficacy of the proposed ILME-ADA method with both RNN-T and LAS modeling frameworks employing neural network and n-gram LMs as ELMs respectively on two domain specific (target) test sets. The proposed method can achieve significantly better performance on the target test sets while it gets minimal performance degradation on the general test set, compared with both shallow and ILME-based LM fusion methods.