Abstract:The development of video large multimodal models (LMMs) has been hindered by the difficulty of curating large amounts of high-quality raw data from the web. To address this, we propose an alternative approach by creating a high-quality synthetic dataset specifically for video instruction-following, namely LLaVA-Video-178K. This dataset includes key tasks such as detailed captioning, open-ended question-answering (QA), and multiple-choice QA. By training on this dataset, in combination with existing visual instruction tuning data, we introduce LLaVA-Video, a new video LMM. Our experiments demonstrate that LLaVA-Video achieves strong performance across various video benchmarks, highlighting the effectiveness of our dataset. We plan to release the dataset, its generation pipeline, and the model checkpoints.
Abstract:Visual instruction tuning has made considerable strides in enhancing the capabilities of Large Multimodal Models (LMMs). However, existing open LMMs largely focus on single-image tasks, their applications to multi-image scenarios remains less explored. Additionally, prior LMM research separately tackles different scenarios, leaving it impossible to generalize cross scenarios with new emerging capabilities. To this end, we introduce LLaVA-NeXT-Interleave, which simultaneously tackles Multi-image, Multi-frame (video), Multi-view (3D), and Multi-patch (single-image) scenarios in LMMs. To enable these capabilities, we regard the interleaved data format as a general template and compile the M4-Instruct dataset with 1,177.6k samples, spanning 4 primary domains with 14 tasks and 41 datasets. We also curate the LLaVA-Interleave Bench to comprehensively evaluate the multi-image performance of LMMs. Through extensive experiments, LLaVA-NeXT-Interleave achieves leading results in multi-image, video, and 3D benchmarks, while maintaining the performance of single-image tasks. Besides, our model also exhibits several emerging capabilities, e.g., transferring tasks across different settings and modalities. Code is available at https://github.com/LLaVA-VL/LLaVA-NeXT
Abstract:Speech understanding as an element of the more generic video understanding using audio-visual large language models (av-LLMs) is a crucial yet understudied aspect. This paper proposes video-SALMONN, a single end-to-end av-LLM for video processing, which can understand not only visual frame sequences, audio events and music, but speech as well. To obtain fine-grained temporal information required by speech understanding, while keeping efficient for other video elements, this paper proposes a novel multi-resolution causal Q-Former (MRC Q-Former) structure to connect pre-trained audio-visual encoders and the backbone large language model. Moreover, dedicated training approaches including the diversity loss and the unpaired audio-visual mixed training scheme are proposed to avoid frames or modality dominance. On the introduced speech-audio-visual evaluation benchmark, video-SALMONN achieves more than 25\% absolute accuracy improvements on the video-QA task and over 30\% absolute accuracy improvements on audio-visual QA tasks with human speech. In addition, video-SALMONN demonstrates remarkable video comprehension and reasoning abilities on tasks that are unprecedented by other av-LLMs. Our training code and model checkpoints are available at \texttt{\url{https://github.com/bytedance/SALMONN/}}.
Abstract:This paper explores enabling large language models (LLMs) to understand spatial information from multichannel audio, a skill currently lacking in auditory LLMs. By leveraging LLMs' advanced cognitive and inferential abilities, the aim is to enhance understanding of 3D environments via audio. We study 3 spatial audio tasks: sound source localization (SSL), far-field speech recognition (FSR), and localisation-informed speech extraction (LSE), achieving notable progress in each task. For SSL, our approach achieves an MAE of $2.70^{\circ}$ on the Spatial LibriSpeech dataset, substantially surpassing the prior benchmark of about $6.60^{\circ}$. Moreover, our model can employ spatial cues to improve FSR accuracy and execute LSE by selectively attending to sounds originating from a specified direction via text prompts, even amidst overlapping speech. These findings highlight the potential of adapting LLMs to grasp physical audio concepts, paving the way for LLM-based agents in 3D environments.
Abstract:Multi-talker automatic speech recognition plays a crucial role in scenarios involving multi-party interactions, such as meetings and conversations. Due to its inherent complexity, this task has been receiving increasing attention. Notably, the serialized output training (SOT) stands out among various approaches because of its simplistic architecture and exceptional performance. However, the frequent speaker changes in token-level SOT (t-SOT) present challenges for the autoregressive decoder in effectively utilizing context to predict output sequences. To address this issue, we introduce a masked t-SOT label, which serves as the cornerstone of an auxiliary training loss. Additionally, we utilize a speaker similarity matrix to refine the self-attention mechanism of the decoder. This strategic adjustment enhances contextual relationships within the same speaker's tokens while minimizing interactions between different speakers' tokens. We denote our method as speaker-aware SOT (SA-SOT). Experiments on the Librispeech datasets demonstrate that our SA-SOT obtains a relative cpWER reduction ranging from 12.75% to 22.03% on the multi-talker test sets. Furthermore, with more extensive training, our method achieves an impressive cpWER of 3.41%, establishing a new state-of-the-art result on the LibrispeechMix dataset.
Abstract:Audio-text pre-training (ATP) has witnessed remarkable strides across a variety of downstream tasks. Yet, most existing pretrained audio models only specialize in either discriminative tasks or generative tasks. In this study, we develop SLIT, a novel ATP framework which transfers flexibly to both audio-text understanding and generation tasks, bootstrapping audio-text pre-training from frozen pretrained audio encoders and large language models. To bridge the modality gap during pre-training, we leverage Q-Former, which undergoes a multi-stage pre-training process. The first stage enhances audio-text representation learning from a frozen audio encoder, while the second stage boosts audio-to-text generative learning with a frozen language model. Furthermore, we introduce an ATP instruction tuning strategy, which enables flexible and informative feature extraction tailered to the given instructions for different tasks. Experiments show that SLIT achieves superior performances on a variety of audio-text understanding and generation tasks, and even demonstrates strong generalization capabilities when directly applied to zero-shot scenarios.
Abstract:One-shot 3D talking portrait generation aims to reconstruct a 3D avatar from an unseen image, and then animate it with a reference video or audio to generate a talking portrait video. The existing methods fail to simultaneously achieve the goals of accurate 3D avatar reconstruction and stable talking face animation. Besides, while the existing works mainly focus on synthesizing the head part, it is also vital to generate natural torso and background segments to obtain a realistic talking portrait video. To address these limitations, we present Real3D-Potrait, a framework that (1) improves the one-shot 3D reconstruction power with a large image-to-plane model that distills 3D prior knowledge from a 3D face generative model; (2) facilitates accurate motion-conditioned animation with an efficient motion adapter; (3) synthesizes realistic video with natural torso movement and switchable background using a head-torso-background super-resolution model; and (4) supports one-shot audio-driven talking face generation with a generalizable audio-to-motion model. Extensive experiments show that Real3D-Portrait generalizes well to unseen identities and generates more realistic talking portrait videos compared to previous methods. Video samples and source code are available at https://real3dportrait.github.io .
Abstract:Deep biasing for the Transducer can improve the recognition performance of rare words or contextual entities, which is essential in practical applications, especially for streaming Automatic Speech Recognition (ASR). However, deep biasing with large-scale rare words remains challenging, as the performance drops significantly when more distractors exist and there are words with similar grapheme sequences in the bias list. In this paper, we combine the phoneme and textual information of rare words in Transducers to distinguish words with similar pronunciation or spelling. Moreover, the introduction of training with text-only data containing more rare words benefits large-scale deep biasing. The experiments on the LibriSpeech corpus demonstrate that the proposed method achieves state-of-the-art performance on rare word error rate for different scales and levels of bias lists.
Abstract:Hearing is arguably an essential ability of artificial intelligence (AI) agents in the physical world, which refers to the perception and understanding of general auditory information consisting of at least three types of sounds: speech, audio events, and music. In this paper, we propose SALMONN, a speech audio language music open neural network, built by integrating a pre-trained text-based large language model (LLM) with speech and audio encoders into a single multimodal model. SALMONN enables the LLM to directly process and understand general audio inputs and achieve competitive performances on a number of speech and audio tasks used in training, such as automatic speech recognition and translation, auditory-information-based question answering, emotion recognition, speaker verification, and music and audio captioning \textit{etc.} SALMONN also has a diverse set of emergent abilities unseen in the training, which includes but is not limited to speech translation to untrained languages, speech-based slot filling, spoken-query-based question answering, audio-based storytelling, and speech audio co-reasoning \textit{etc}. The presence of the cross-modal emergent abilities is studied, and a novel few-shot activation tuning approach is proposed to activate such abilities of SALMONN. To our knowledge, SALMONN is the first model of its type and can be regarded as a step towards AI with generic hearing abilities. An interactive demo of SALMONN is available at \texttt{\url{https://github.com/bytedance/SALMONN}}, and the training code and model checkpoints will be released upon acceptance.
Abstract:Audio-visual large language models (LLM) have drawn significant attention, yet the fine-grained combination of both input streams is rather under-explored, which is challenging but necessary for LLMs to understand general video inputs. To this end, a fine-grained audio-visual joint representation (FAVOR) learning framework for multimodal LLMs is proposed in this paper, which extends a text-based LLM to simultaneously perceive speech and audio events in the audio input stream and images or videos in the visual input stream, at the frame level. To fuse the audio and visual feature streams into joint representations and to align the joint space with the LLM input embedding space, we propose a causal Q-Former structure with a causal attention module to enhance the capture of causal relations of the audio-visual frames across time. An audio-visual evaluation benchmark (AVEB) is also proposed which comprises six representative single-modal tasks with five cross-modal tasks reflecting audio-visual co-reasoning abilities. While achieving competitive single-modal performance on audio, speech and image tasks in AVEB, FAVOR achieved over 20% accuracy improvements on the video question-answering task when fine-grained information or temporal causal reasoning is required. FAVOR, in addition, demonstrated remarkable video comprehension and reasoning abilities on tasks that are unprecedented by other multimodal LLMs. An interactive demo of FAVOR is available at https://github.com/BriansIDP/AudioVisualLLM.git, and the training code and model checkpoints will be released soon.