Abstract:Full-duplex multimodal large language models (LLMs) provide a unified framework for addressing diverse speech understanding and generation tasks, enabling more natural and seamless human-machine conversations. Unlike traditional modularised conversational AI systems, which separate speech recognition, understanding, and text-to-speech generation into distinct components, multimodal LLMs operate as single end-to-end models. This streamlined design eliminates error propagation across components and fully leverages the rich non-verbal information embedded in input speech signals. We introduce SALMONN-omni, a codec-free, full-duplex speech understanding and generation model capable of simultaneously listening to its own generated speech and background sounds while speaking. To support this capability, we propose a novel duplex spoken dialogue framework incorporating a ``thinking'' mechanism that facilitates asynchronous text and speech generation relying on embeddings instead of codecs (quantized speech and audio tokens). Experimental results demonstrate SALMONN-omni's versatility across a broad range of streaming speech tasks, including speech recognition, speech enhancement, and spoken question answering. Additionally, SALMONN-omni excels at managing turn-taking, barge-in, and echo cancellation scenarios, establishing its potential as a robust prototype for full-duplex conversational AI systems. To the best of our knowledge, SALMONN-omni is the first codec-free model of its kind. A full technical report along with model checkpoints will be released soon.
Abstract:Large Language Models (LLMs) are increasingly used to assess NLP tasks due to their ability to generate human-like judgments. Single LLMs were used initially, however, recent work suggests using multiple LLMs as judges yields improved performance. An important step in exploiting multiple judgements is the combination stage, aggregation. Existing methods in NLP either assign equal weight to all LLM judgments or are designed for specific tasks such as hallucination detection. This work focuses on aggregating predictions from multiple systems where no reference labels are available. A new method called SkillAggregation is proposed, which learns to combine estimates from LLM judges without needing additional data or ground truth. It extends the Crowdlayer aggregation method, developed for image classification, to exploit the judge estimates during inference. The approach is compared to a range of standard aggregation methods on HaluEval-Dialogue, TruthfulQA and Chatbot Arena tasks. SkillAggregation outperforms Crowdlayer on all tasks, and yields the best performance over all approaches on the majority of tasks.
Abstract:Videos contain a wealth of information, and generating detailed and accurate descriptions in natural language is a key aspect of video understanding. In this paper, we present video-SALMONN 2, an advanced audio-visual large language model (LLM) with low-rank adaptation (LoRA) designed for enhanced video (with paired audio) captioning through directed preference optimization (DPO). We propose new metrics to evaluate the completeness and accuracy of video descriptions, which are optimized using DPO. To further improve training, we introduce a novel multi-round DPO (mrDPO) approach, which involves periodically updating the DPO reference model, merging and re-initializing the LoRA module as a proxy for parameter updates after each training round (1,000 steps), and incorporating guidance from ground-truth video captions to stabilize the process. To address potential catastrophic forgetting of non-captioning abilities due to mrDPO, we propose rebirth tuning, which finetunes the pre-DPO LLM by using the captions generated by the mrDPO-trained model as supervised labels. Experiments show that mrDPO significantly enhances video-SALMONN 2's captioning accuracy, reducing global and local error rates by 40\% and 20\%, respectively, while decreasing the repetition rate by 35\%. The final video-SALMONN 2 model, with just 7 billion parameters, surpasses leading models such as GPT-4o and Gemini-1.5-Pro in video captioning tasks, while maintaining competitive performance to the state-of-the-art on widely used video question-answering benchmark among models of similar size. Upon acceptance, we will release the code, model checkpoints, and training and test data. Demos are available at \href{https://video-salmonn-2.github.io}{https://video-salmonn-2.github.io}.
Abstract:Speech quality assessment typically requires evaluating audio from multiple aspects, such as mean opinion score (MOS) and speaker similarity (SIM) etc., which can be challenging to cover using one small model designed for a single task. In this paper, we propose leveraging recently introduced auditory large language models (LLMs) for automatic speech quality assessment. By employing task-specific prompts, auditory LLMs are finetuned to predict MOS, SIM and A/B testing results, which are commonly used for evaluating text-to-speech systems. Additionally, the finetuned auditory LLM is able to generate natural language descriptions assessing aspects like noisiness, distortion, discontinuity, and overall quality, providing more interpretable outputs. Extensive experiments have been performed on the NISQA, BVCC, SOMOS and VoxSim speech quality datasets, using open-source auditory LLMs such as SALMONN, Qwen-Audio, and Qwen2-Audio. For the natural language descriptions task, a commercial model Google Gemini 1.5 Pro is also evaluated. The results demonstrate that auditory LLMs achieve competitive performance compared to state-of-the-art task-specific small models in predicting MOS and SIM, while also delivering promising results in A/B testing and natural language descriptions. Our data processing scripts and finetuned model checkpoints will be released upon acceptance.
Abstract:Audio language models can understand audio inputs and perform a range of audio-related tasks based on instructions, such as speech recognition and audio captioning, where the instructions are usually textual prompts. Audio language models are mostly initialized from pre-trained audio encoders and large language models (LLMs). Although these pre-trained components were developed to support multiple languages, audio-language models are trained predominantly on English data, which may limit their usability to only English instructions or English speech inputs. First, this paper examines the performance of existing audio language models in an underserved language using Thai as an example. This paper demonstrates that, despite being built on multilingual backbones, audio language models do not exhibit cross-lingual emergent abilities to low-resource languages. Second, this paper studies data mixture for developing audio language models that are optimized for a target language as well as English. In addition. this paper integrates audio comprehension and speech instruction-following capabilities into a single unified model. Our experiments provide insights into data mixture for enhancing instruction-following capabilities in both a low-resource language and English. Our model, Typhoon-Audio, outperforms existing open-source audio language models by a considerable margin, and it is comparable to state-of-the-art Gemini-1.5-Pro in both English and Thai languages.
Abstract:Diffusion-based generative models have recently achieved remarkable results in speech and vocal enhancement due to their ability to model complex speech data distributions. While these models generalize well to unseen acoustic environments, they may not achieve the same level of fidelity as the discriminative models specifically trained to enhance particular acoustic conditions. In this paper, we propose Ex-Diff, a novel score-based diffusion model that integrates the latent representations produced by a discriminative model to improve speech and vocal enhancement, which combines the strengths of both generative and discriminative models. Experimental results on the widely used MUSDB dataset show relative improvements of 3.7% in SI-SDR and 10.0% in SI-SIR compared to the baseline diffusion model for speech and vocal enhancement tasks, respectively. Additionally, case studies are provided to further illustrate and analyze the complementary nature of generative and discriminative models in this context.
Abstract:In this paper, Whisper, a large-scale pre-trained model for automatic speech recognition, is proposed to apply to speaker verification. A partial multi-scale feature aggregation (PMFA) approach is proposed based on a subset of Whisper encoder blocks to derive highly discriminative speaker embeddings.Experimental results demonstrate that using the middle to later blocks of the Whisper encoder keeps more speaker information. On the VoxCeleb1 and CN-Celeb1 datasets, our system achieves 1.42% and 8.23% equal error rates (EERs) respectively, receiving 0.58% and 1.81% absolute EER reductions over the ECAPA-TDNN baseline, and 0.46% and 0.97% over the ResNet34 baseline. Furthermore, our results indicate that using Whisper models trained on multilingual data can effectively enhance the model's robustness across languages. Finally, the low-rank adaptation approach is evaluated, which reduces the trainable model parameters by approximately 45 times while only slightly increasing EER by 0.2%.
Abstract:End-to-end models have shown superior performance for automatic speech recognition (ASR). However, such models are often very large in size and thus challenging to deploy on resource-constrained edge devices. While quantisation can reduce model sizes, it can lead to increased word error rates (WERs). Although improved quantisation methods were proposed to address the issue of performance degradation, the fact that quantised models deployed on edge devices often target only on a small group of users is under-explored. To this end, we propose personalisation for quantised models (P4Q), a novel strategy that uses speaker adaptation (SA) to improve quantised end-to-end ASR models by fitting them to the characteristics of the target speakers. In this paper, we study the P4Q strategy based on Whisper and Conformer attention-based encoder-decoder (AED) end-to-end ASR models, which leverages a 4-bit block-wise NormalFloat4 (NF4) approach for quantisation and the low-rank adaptation (LoRA) approach for SA. Experimental results on the LibriSpeech and the TED-LIUM 3 corpora show that, with a 7-time reduction in model size and 1% extra speaker-specific parameters, 15.1% and 23.3% relative WER reductions were achieved on quantised Whisper and Conformer AED models respectively, comparing to the full precision models.
Abstract:This paper introduces a novel approach to speaker-attributed ASR transcription using a neural clustering method. With a parallel processing mechanism, diarisation and ASR can be applied simultaneously, helping to prevent the accumulation of errors from one sub-system to the next in a cascaded system. This is achieved by the use of ASR, trained using a serialised output training method, together with segment-level discriminative neural clustering (SDNC) to assign speaker labels. With SDNC, our system does not require an extra non-neural clustering method to assign speaker labels, thus allowing the entire system to be based on neural networks. Experimental results on the AMI meeting dataset demonstrate that SDNC outperforms spectral clustering (SC) by a 19% relative diarisation error rate (DER) reduction on the AMI Eval set. When compared with the cascaded system with SC, the parallel system with SDNC gives a 7%/4% relative improvement in cpWER on the Dev/Eval set.
Abstract:Mixture-of-experts (MoE) models have achieved excellent results in many tasks. However, conventional MoE models are often very large, making them challenging to deploy on resource-constrained edge devices. In this paper, we propose a novel speaker adaptive mixture of LoRA experts (SAML) approach, which uses low-rank adaptation (LoRA) modules as experts to reduce the number of trainable parameters in MoE. Specifically, SAML is applied to the quantised and personalised end-to-end automatic speech recognition models, which combines test-time speaker adaptation to improve the performance of heavily compressed models in speaker-specific scenarios. Experiments have been performed on the LibriSpeech and the TED-LIUM 3 corpora. Remarkably, with a 7x reduction in model size, 29.1% and 31.1% relative word error rate reductions were achieved on the quantised Whisper model and Conformer-based attention-based encoder-decoder ASR model respectively, comparing to the original full precision models.