Abstract:While large language models (LLMs) have been applied to automatic speech recognition (ASR), the task of making the model streamable remains a challenge. This paper proposes a novel model architecture, Transducer-Llama, that integrates LLMs into a Factorized Transducer (FT) model, naturally enabling streaming capabilities. Furthermore, given that the large vocabulary of LLMs can cause data sparsity issue and increased training costs for spoken language systems, this paper introduces an efficient vocabulary adaptation technique to align LLMs with speech system vocabularies. The results show that directly optimizing the FT model with a strong pre-trained LLM-based predictor using the RNN-T loss yields some but limited improvements over a smaller pre-trained LM predictor. Therefore, this paper proposes a weak-to-strong LM swap strategy, using a weak LM predictor during RNN-T loss training and then replacing it with a strong LLM. After LM replacement, the minimum word error rate (MWER) loss is employed to finetune the integration of the LLM predictor with the Transducer-Llama model. Experiments on the LibriSpeech and large-scale multi-lingual LibriSpeech corpora show that the proposed streaming Transducer-Llama approach gave a 17% relative WER reduction (WERR) over a strong FT baseline and a 32% WERR over an RNN-T baseline.
Abstract:Speech-based automatic detection of Alzheimer's disease (AD) and depression has attracted increased attention. Confidence estimation is crucial for a trust-worthy automatic diagnostic system which informs the clinician about the confidence of model predictions and helps reduce the risk of misdiagnosis. This paper investigates confidence estimation for automatic detection of AD and depression based on clinical interviews. A novel Bayesian approach is proposed which uses a dynamic Dirichlet prior distribution to model the second-order probability of the predictive distribution. Experimental results on the publicly available ADReSS and DAIC-WOZ datasets demonstrate that the proposed method outperforms a range of baselines for both classification accuracy and confidence estimation.
Abstract:This paper introduces a novel approach to speaker-attributed ASR transcription using a neural clustering method. With a parallel processing mechanism, diarisation and ASR can be applied simultaneously, helping to prevent the accumulation of errors from one sub-system to the next in a cascaded system. This is achieved by the use of ASR, trained using a serialised output training method, together with segment-level discriminative neural clustering (SDNC) to assign speaker labels. With SDNC, our system does not require an extra non-neural clustering method to assign speaker labels, thus allowing the entire system to be based on neural networks. Experimental results on the AMI meeting dataset demonstrate that SDNC outperforms spectral clustering (SC) by a 19% relative diarisation error rate (DER) reduction on the AMI Eval set. When compared with the cascaded system with SC, the parallel system with SDNC gives a 7%/4% relative improvement in cpWER on the Dev/Eval set.
Abstract:While the neural transducer is popular for online speech recognition, simultaneous speech translation (SST) requires both streaming and re-ordering capabilities. This paper presents the LS-Transducer-SST, a label-synchronous neural transducer for SST, which naturally possesses these two properties. The LS-Transducer-SST dynamically decides when to emit translation tokens based on an Auto-regressive Integrate-and-Fire (AIF) mechanism. A latency-controllable AIF is also proposed, which can control the quality-latency trade-off either only during decoding, or it can be used in both decoding and training. The LS-Transducer-SST can naturally utilise monolingual text-only data via its prediction network which helps alleviate the key issue of data sparsity for E2E SST. During decoding, a chunk-based incremental joint decoding technique is designed to refine and expand the search space. Experiments on the Fisher-CallHome Spanish (Es-En) and MuST-C En-De data show that the LS-Transducer-SST gives a better quality-latency trade-off than existing popular methods. For example, the LS-Transducer-SST gives a 3.1/2.9 point BLEU increase (Es-En/En-De) relative to CAAT at a similar latency and a 1.4 s reduction in average lagging latency with similar BLEU scores relative to Wait-k.
Abstract:Wav2Prompt is proposed which allows straightforward integration between spoken input and a text-based large language model (LLM). Wav2Prompt uses a simple training process with only the same data used to train an automatic speech recognition (ASR) model. After training, Wav2Prompt learns continuous representations from speech and uses them as LLM prompts. To avoid task over-fitting issues found in prior work and preserve the emergent abilities of LLMs, Wav2Prompt takes LLM token embeddings as the training targets and utilises a continuous integrate-and-fire mechanism for explicit speech-text alignment. Therefore, a Wav2Prompt-LLM combination can be applied to zero-shot spoken language tasks such as speech translation (ST), speech understanding (SLU), speech question answering (SQA) and spoken-query-based QA (SQQA). It is shown that for these zero-shot tasks, Wav2Prompt performs similarly to an ASR-LLM cascade and better than recent prior work. If relatively small amounts of task-specific paired data are available in few-shot scenarios, the Wav2Prompt-LLM combination can be end-to-end (E2E) fine-tuned. The Wav2Prompt-LLM combination then yields greatly improved results relative to an ASR-LLM cascade for the above tasks. For instance, for English-French ST with the BLOOMZ-7B1 LLM, a Wav2Prompt-LLM combination gave a 8.5 BLEU point increase over an ASR-LLM cascade.
Abstract:Speech emotion recognition is a challenging classification task with natural emotional speech, especially when the distribution of emotion types is imbalanced in the training and test data. In this case, it is more difficult for a model to learn to separate minority classes, resulting in those sometimes being ignored or frequently misclassified. Previous work has utilised class weighted loss for training, but problems remain as it sometimes causes over-fitting for minor classes or under-fitting for major classes. This paper presents the system developed by a multi-site team for the participation in the Odyssey 2024 Emotion Recognition Challenge Track-1. The challenge data has the aforementioned properties and therefore the presented systems aimed to tackle these issues, by introducing focal loss in optimisation when applying class weighted loss. Specifically, the focal loss is further weighted by prior-based class weights. Experimental results show that combining these two approaches brings better overall performance, by sacrificing performance on major classes. The system further employs a majority voting strategy to combine the outputs of an ensemble of 7 models. The models are trained independently, using different acoustic features and loss functions - with the aim to have different properties for different data. Hence these models show different performance preferences on major classes and minor classes. The ensemble system output obtained the best performance in the challenge, ranking top-1 among 68 submissions. It also outperformed all single models in our set. On the Odyssey 2024 Emotion Recognition Challenge Task-1 data the system obtained a Macro-F1 score of 35.69% and an accuracy of 37.32%.
Abstract:The subjective perception of emotion leads to inconsistent labels from human annotators. Typically, utterances lacking majority-agreed labels are excluded when training an emotion classifier, which cause problems when encountering ambiguous emotional expressions during testing. This paper investigates three methods to handle ambiguous emotion. First, we show that incorporating utterances without majority-agreed labels as an additional class in the classifier reduces the classification performance of the other emotion classes. Then, we propose detecting utterances with ambiguous emotions as out-of-domain samples by quantifying the uncertainty in emotion classification using evidential deep learning. This approach retains the classification accuracy while effectively detects ambiguous emotion expressions. Furthermore, to obtain fine-grained distinctions among ambiguous emotions, we propose representing emotion as a distribution instead of a single class label. The task is thus re-framed from classification to distribution estimation where every individual annotation is taken into account, not just the majority opinion. The evidential uncertainty measure is extended to quantify the uncertainty in emotion distribution estimation. Experimental results on the IEMOCAP and CREMA-D datasets demonstrate the superior capability of the proposed method in terms of majority class prediction, emotion distribution estimation, and uncertainty estimation.
Abstract:Foundation models have shown superior performance for speech emotion recognition (SER). However, given the limited data in emotion corpora, finetuning all parameters of large pre-trained models for SER can be both resource-intensive and susceptible to overfitting. This paper investigates parameter-efficient finetuning (PEFT) for SER. Various PEFT adaptors are systematically studied for both classification of discrete emotion categories and prediction of dimensional emotional attributes. The results demonstrate that the combination of PEFT methods surpasses full finetuning with a significant reduction in the number of trainable parameters. Furthermore, a two-stage adaptation strategy is proposed to adapt models trained on acted emotion data, which is more readily available, to make the model more adept at capturing natural emotional expressions. Both intra- and cross-corpus experiments validate the efficacy of the proposed approach in enhancing the performance on both the source and target domains.
Abstract:Recently, connectionist temporal classification (CTC)-based end-to-end (E2E) automatic speech recognition (ASR) models have achieved impressive results, especially with the development of self-supervised learning. However, E2E ASR models trained on paired speech-text data often suffer from domain shifts from training to testing. To alleviate this issue, this paper proposes a flat-start joint training method, named FastInject, which efficiently injects multi-domain unpaired text data into CTC-based ASR training. To maintain training efficiency, text units are pre-upsampled, and their representations are fed into the CTC model along with speech features. To bridge the modality gap between speech and text, an attention-based modality matching mechanism (AM3) is proposed, which retains the E2E flat-start training. Experiments show that the proposed FastInject gave a 22\% relative WER reduction (WERR) for intra-domain Librispeech-100h data and 20\% relative WERR on out-of-domain test sets.
Abstract:Although end-to-end (E2E) automatic speech recognition (ASR) has shown state-of-the-art recognition accuracy, it tends to be implicitly biased towards the training data distribution which can degrade generalisation. This paper proposes a label-synchronous neural transducer (LS-Transducer), which provides a natural approach to domain adaptation based on text-only data. The LS-Transducer extracts a label-level encoder representation before combining it with the prediction network output. Since blank tokens are no longer needed, the prediction network performs as a standard language model, which can be easily adapted using text-only data. An Auto-regressive Integrate-and-Fire (AIF) mechanism is proposed to generate the label-level encoder representation while retaining low latency operation that can be used for streaming. In addition, a streaming joint decoding method is designed to improve ASR accuracy while retaining synchronisation with AIF. Experiments show that compared to standard neural transducers, the proposed LS-Transducer gave a 12.9% relative WER reduction (WERR) for intra-domain LibriSpeech data, as well as 21.4% and 24.6% relative WERRs on cross-domain TED-LIUM 2 and AESRC2020 data with an adapted prediction network.