SynSense AG, Swizerland
Abstract:Integrated sensing and communication (ISAC) has emerged as a transformative technology for 6G networks, enabling the seamless integration of communication and sensing functionalities. Reconfigurable intelligent surfaces (RIS), with their capability to adaptively reconfigure the radio environment, have shown significant potential in enhancing communication quality and enabling advanced cooperative sensing. This paper investigates a multi-RIS-assisted ISAC system and introduces a novel multi-perspective observation framework that leverages the diversity of multiple observation paths, each exhibiting distinct spatial, delay, and Doppler characteristics for both target and clutter. The proposed framework integrates symbol-level precoding (SLP) and space-time adaptive processing (STAP) to fully exploit the benefits of multi-perspective observations, enabling superior target-clutter separation and significantly improving detection accuracy. The objective is to jointly design the transmit waveform, reflection coefficients of multiple active RISs, and spatial-temporal receive filters to maximize the radar output signal-to-clutter-plus-noise ratio (SCNR) for target detection, while ensuring the quality-of-service (QoS) requirements of communication users. To address the resulting non-convex optimization problem, an effective iterative algorithm is developed, combining fractional programming (FP), majorization-minimization (MM), and the alternating direction method of multipliers (ADMM). Extensive simulation results validate the effectiveness of the proposed multi-perspective observation strategy, demonstrating its advantages in improving target detection performance in challenging environments.
Abstract:The degraded performance and group unfairness caused by confounding sensitive attributes in rumor detection remains relatively unexplored. To address this, we propose a two-step framework. Initially, it identifies confounding sensitive attributes that limit rumor detection performance and cause unfairness across groups. Subsequently, we aim to learn equally informative representations through invariant learning. Our method considers diverse sets of groups without sensitive attribute annotations. Experiments show our method easily integrates with existing rumor detectors, significantly improving both their detection performance and fairness.
Abstract:In the context of large language models (LLMs), current advanced reasoning methods have made impressive strides in various reasoning tasks. However, when it comes to logical reasoning tasks, major challenges remain in both efficacy and efficiency. This is rooted in the fact that these systems fail to fully leverage the inherent structure of logical tasks throughout the reasoning processes such as decomposition, search, and resolution. To address this, we propose a logic-complete reasoning framework, Aristotle, with three key components: Logical Decomposer, Logical Search Router, and Logical Resolver. In our framework, symbolic expressions and logical rules are comprehensively integrated into the entire reasoning process, significantly alleviating the bottlenecks of logical reasoning, i.e., reducing sub-task complexity, minimizing search errors, and resolving logical contradictions. The experimental results on several datasets demonstrate that Aristotle consistently outperforms state-of-the-art reasoning frameworks in both accuracy and efficiency, particularly excelling in complex logical reasoning scenarios. We will open-source all our code at https://github.com/Aiden0526/Aristotle.
Abstract:In an era where digital security is crucial, efficient processing of security-related inquiries through supply chain security questionnaires is imperative. This paper introduces a novel approach using Natural Language Processing (NLP) and Retrieval-Augmented Generation (RAG) to automate these responses. We developed QuestSecure, a system that interprets diverse document formats and generates precise responses by integrating large language models (LLMs) with an advanced retrieval system. Our experiments show that QuestSecure significantly improves response accuracy and operational efficiency. By employing advanced NLP techniques and tailored retrieval mechanisms, the system consistently produces contextually relevant and semantically rich responses, reducing cognitive load on security teams and minimizing potential errors. This research offers promising avenues for automating complex security management tasks, enhancing organizational security processes.
Abstract:In this paper, we introduce SailCompass, a reproducible and robust evaluation benchmark for assessing Large Language Models (LLMs) on Southeast Asian Languages (SEA). SailCompass encompasses three main SEA languages, eight primary tasks including 14 datasets covering three task types (generation, multiple-choice questions, and classification). To improve the robustness of the evaluation approach, we explore different prompt configurations for multiple-choice questions and leverage calibrations to improve the faithfulness of classification tasks. With SailCompass, we derive the following findings: (1) SEA-specialized LLMs still outperform general LLMs, although the gap has narrowed; (2) A balanced language distribution is important for developing better SEA-specialized LLMs; (3) Advanced prompting techniques (e.g., calibration, perplexity-based ranking) are necessary to better utilize LLMs. All datasets and evaluation scripts are public.
Abstract:Extending context window sizes allows large language models (LLMs) to process longer sequences and handle more complex tasks. Rotary Positional Embedding (RoPE) has become the de facto standard due to its relative positional encoding properties that benefit long-context training. However, we observe that using RoPE with BFloat16 format results in numerical issues, causing it to deviate from its intended relative positional encoding, especially in long-context scenarios. This issue arises from BFloat16's limited precision and accumulates as context length increases, with the first token contributing significantly to this problem. To address this, we develop AnchorAttention, a plug-and-play attention method that alleviates numerical issues caused by BFloat16, improves long-context capabilities, and speeds up training. AnchorAttention reduces unnecessary attention computations, maintains semantic coherence, and boosts computational efficiency by treating the first token as a shared anchor with a consistent position ID, making it visible to all documents within the training context. Experiments on three types of LLMs demonstrate that AnchorAttention significantly improves long-context performance and reduces training time by over 50\% compared to standard full attention mechanisms, while preserving the original LLM's capabilities on general tasks. Our code is available at https://github.com/haonan3/AnchorContext.
Abstract:Real-world enterprise text-to-SQL workflows often involve complex cloud or local data across various database systems, multiple SQL queries in various dialects, and diverse operations from data transformation to analytics. We introduce Spider 2.0, an evaluation framework comprising 632 real-world text-to-SQL workflow problems derived from enterprise-level database use cases. The databases in Spider 2.0 are sourced from real data applications, often containing over 1,000 columns and stored in local or cloud database systems such as BigQuery and Snowflake. We show that solving problems in Spider 2.0 frequently requires understanding and searching through database metadata, dialect documentation, and even project-level codebases. This challenge calls for models to interact with complex SQL workflow environments, process extremely long contexts, perform intricate reasoning, and generate multiple SQL queries with diverse operations, often exceeding 100 lines, which goes far beyond traditional text-to-SQL challenges. Our evaluations indicate that based on o1-preview, our code agent framework successfully solves only 17.0% of the tasks, compared with 91.2% on Spider 1.0 and 73.0% on BIRD. Our results on Spider 2.0 show that while language models have demonstrated remarkable performance in code generation -- especially in prior text-to-SQL benchmarks -- they require significant improvement in order to achieve adequate performance for real-world enterprise usage. Progress on Spider 2.0 represents crucial steps towards developing intelligent, autonomous, code agents for real-world enterprise settings. Our code, baseline models, and data are available at https://spider2-sql.github.io.
Abstract:Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs suitable for rigorous scientific investigation, particularly those with reproducible data processing pipelines and transparent training protocols, remain limited. The scarcity is due to various challenges, including resource constraints, ethical considerations, and the competitive advantages of keeping models advanced. To address the gap, we introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an ``open cookbook'' for the research community. Unlike most prior efforts, we release not only model weights and inference code, but also the reproducible training data, complete data processing pipeline, rigorous experimental ablation results, and detailed training protocols for open scientific research. Through this comprehensive release, we identify the key ingredients for building a top-tier code LLM: (1) code optimized heuristic rules for data cleaning and methods for data deduplication, (2) recall of text corpus related to code and (3) high-quality synthetic data in both annealing and supervised fine-tuning stages. By offering this level of openness, we aim to broaden access to all aspects of a top-tier code LLM, with OpenCoder serving as both a powerful model and an open foundation to accelerate research, and enable reproducible advancements in code AI.
Abstract:Masked diffusion models (MDMs) have shown promise in language modeling, yet their scalability and effectiveness in core language tasks, such as text generation and language understanding, remain underexplored. This paper establishes the first scaling law for MDMs, demonstrating a scaling rate comparable to autoregressive models (ARMs) and a relatively small compute gap. Motivated by their scalability, we train a family of MDMs with up to 1.1 billion (B) parameters to systematically evaluate their performance against ARMs of comparable or larger sizes. Fully leveraging the probabilistic formulation of MDMs, we propose a simple yet effective \emph{unsupervised classifier-free guidance} that effectively exploits large-scale unpaired data, boosting performance for conditional inference. In language understanding, a 1.1B MDM shows competitive results, outperforming the larger 1.5B GPT-2 model on four out of eight zero-shot benchmarks. In text generation, MDMs provide a flexible trade-off compared to ARMs utilizing KV-cache: MDMs match the performance of ARMs while being 1.4 times faster, or achieve higher quality than ARMs at a higher computational cost. Moreover, MDMs address challenging tasks for ARMs by effectively handling bidirectional reasoning and adapting to temporal shifts in data. Notably, a 1.1B MDM breaks the \emph{reverse curse} encountered by much larger ARMs with significantly more data and computation, such as Llama-2 (13B) and GPT-3 (175B). Our code is available at \url{https://github.com/ML-GSAI/SMDM}.
Abstract:We introduce DataTales, a novel benchmark designed to assess the proficiency of language models in data narration, a task crucial for transforming complex tabular data into accessible narratives. Existing benchmarks often fall short in capturing the requisite analytical complexity for practical applications. DataTales addresses this gap by offering 4.9k financial reports paired with corresponding market data, showcasing the demand for models to create clear narratives and analyze large datasets while understanding specialized terminology in the field. Our findings highlights the significant challenge that language models face in achieving the necessary precision and analytical depth for proficient data narration, suggesting promising avenues for future model development and evaluation methodologies.