Abstract:Integrated sensing and communication (ISAC) is a pivotal enabler for next-generation wireless networks. A key challenge in ISAC systems lies in designing dual-functional waveforms that can achieve satisfactory radar sensing accuracy by effectively suppressing range-Doppler sidelobes. However, existing solutions are often computationally intensive, limiting their practicality in multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) ISAC deployments. This paper presents a novel low-complexity algorithm leveraging the augmented Lagrangian method (ALM) and Riemannian conjugate gradient (RCG) optimization techniques to address these challenges. The proposed algorithm achieves superior sidelobe suppression compared to state-of-the-art methods while dramatically reducing computational complexity, making it highly suitable for real-world MIMO-OFDM ISAC systems. Simulation results demonstrate that the proposed approach not only outperforms existing benchmarks in sidelobe reduction but also accelerates convergence, ensuring efficient performance across communication and sensing tasks.
Abstract:Integrated sensing and communication (ISAC) is a key enabling technique for future wireless networks owing to its efficient hardware and spectrum utilization. In this paper, we focus on dual-functional waveform design for a multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) ISAC system, which is considered to be a promising solution for practical deployment. Since the dual-functional waveform carries communication information, its random nature leads to high range-Doppler sidelobes in the ambiguity function, which in turn degrades radar sensing performance. To suppress range-Doppler sidelobes, we propose a novel symbol-level precoding (SLP) based waveform design for MIMO-OFDM ISAC systems by fully exploiting the temporal degrees of freedom (DoFs). Our goal is to minimize the range-Doppler integrated sidelobe level (ISL) while satisfying the constraints of target illumination power, multi-user communication quality of service (QoS), and constant-modulus transmission. To solve the resulting non-convex waveform design problem, we develop an efficient algorithm using the majorization-minimization (MM) and alternative direction method of multipliers (ADMM) methods. Simulation results show that the proposed waveform has significantly reduced range-Doppler sidelobes compared with signals designed only for communications and other baselines. In addition, the proposed waveform design achieves target detection and estimation performance close to that achievable by waveforms designed only for radar, which demonstrates the superiority of the proposed SLP-based ISAC approach.
Abstract:Integrated sensing and communication (ISAC) is a promising technology in future wireless systems owing to its efficient hardware and spectrum utilization. In this paper, we consider a multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) ISAC system and propose a novel waveform design to provide better radar ranging performance by taking range sidelobe suppression into consideration. In specific, we aim to design MIMO-OFDM dual-function waveform to minimize its integrated sidelobe level (ISL) while satisfying the quality of service (QoS) requirements of multi-user communications and the transmit power constraint. To achieve a lower ISL, the symbol-level precoding (SLP) technique is employed to fully exploit the degrees of freedom (DoFs) of the waveform design in both temporal and spatial domains. An efficient algorithm utilizing majorization-minimization (MM) framework is developed to solve the non-convex waveform design problem. Simulation results reveal radar ranging performance improvement and demonstrate the benefits of the proposed SLP-based low-range-sidelobe waveform design in ISAC systems.