Abstract:Traditional production workflow of high-precision 3D mesh assets necessitates a cumbersome and laborious process of manual sculpting by specialized modelers. The recent years have witnessed remarkable advances in AI-empowered 3D content creation. However, although the latest state-of-the-arts are already capable of generating plausible structures and intricate appearances from images or text prompts, the actual mesh surfaces are typically over-smoothing and lack geometric details. This paper introduces SuperCarver, a 3D geometry super-resolution framework particularly tailored for adding texture-consistent surface details to given coarse meshes. Technically, we start by rendering the original textured mesh into the image domain from multiple viewpoints. To achieve geometric detail generation, we develop a deterministic prior-guided normal diffusion model fine-tuned on a carefully curated dataset of paired low-poly and high-poly normal renderings. To optimize mesh structures from potentially imperfect normal map predictions, we design a simple yet effective noise-resistant inverse rendering scheme based on distance field deformation. Extensive experiments show that SuperCarver generates realistic and expressive surface details as depicted by specific texture appearances, making it a powerful tool for automatically upgrading massive outdated low-quality assets and shortening the iteration cycle of high-quality mesh production in practical applications.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities in tool learning. In real-world scenarios, user queries are often ambiguous and incomplete, requiring effective clarification. However, existing interactive clarification approaches face two critical limitations: reliance on manually constructed datasets and lack of error correction mechanisms during multi-turn clarification. We present AskToAct, which addresses these challenges by exploiting the structural mapping between queries and their tool invocation solutions. Our key insight is that tool parameters naturally represent explicit user intents. By systematically removing key parameters from queries while retaining them as ground truth, we enable automated construction of high-quality training data. We further enhance model robustness by fine-tuning on error-correction augmented data using selective masking mechanism, enabling dynamic error detection during clarification interactions. Comprehensive experiments demonstrate that AskToAct significantly outperforms existing approaches, achieving above 79% accuracy in recovering critical unspecified intents and enhancing clarification efficiency by an average of 48.34% while maintaining high accuracy in tool invocation. Our framework exhibits robust performance across varying complexity levels and successfully generalizes to entirely unseen APIs without additional training, achieving performance comparable to GPT-4 with substantially fewer computational resources.
Abstract:As electric vehicles (EVs) approach the end of their operational life, their batteries retain significant economic value and present promising opportunities for second-life use and material recycling. This is particularly compelling for Global South and other underdeveloped regions, where reliable energy storage is vital to addressing critical challenges posed by weak and even nonexistent power grid and energy infrastructures. However, despite this potential, widespread adoption has been hindered by critical uncertainties surrounding the technical performance, safety, and recertification of second-life batteries. In cases where they have been redeployed, mismatches between estimated and actual performance often render batteries technically unsuitable or hazardous, turning them into liabilities for communities they were intended to benefit. This considerable misalignment exacerbates energy access disparities and undermines the broader vision of energy justice, highlighting an urgent need for robust and scalable solutions to unlock the potential. In the PulseBat Dataset, the authors tested 464 retired lithium-ion batteries, covering 3 cathode material types, 6 historical usages, 3 physical formats, and 6 capacity designs. The pulse test experiments were performed repeatedly for each second-life battery with 10 pulse width, 10 pulse magnitude, multiple state-of-charge, and state-of-health conditions, e.g., from 0.37 to 1.03. The PulseBat Dataset recorded these test conditions and the voltage response as well as the temperature signals that were subject to the injected pulse current, which could be used as a valuable data resource for critical diagnostics tasks such as state-of-charge estimation, state-of-health estimation, cathode material type identification, open-circuit voltage reconstruction, thermal management, and beyond.
Abstract:Computational modeling of aerodynamics is a key problem in aerospace engineering, often involving flows interacting with solid objects such as airfoils. Deep surrogate models have emerged as purely data-driven approaches that learn direct mappings from simulation conditions to solutions based on either simulation or experimental data. Here, we consider modeling of incompressible flows over solid objects, wherein geometric structures are a key factor in determining aerodynamics. To effectively incorporate geometries, we propose a message passing scheme that efficiently and expressively integrates the airfoil shape with the mesh representation. Under this framework, we first obtain a representation of the geometry in the form of a latent graph on the airfoil surface. We subsequently propagate this representation to all collocation points through message passing on a directed, bipartite graph. We demonstrate that this framework supports efficient training by downsampling the solution mesh while avoiding distribution shifts at test time when evaluated on the full mesh. To enable our model to be able to distinguish between distinct spatial regimes of dynamics relative to the airfoil, we represent mesh points in both a leading edge and trailing edge coordinate system. We further enhance the expressiveness of our coordinate system representations by embedding our hybrid Polar-Cartesian coordinates using sinusoidal and spherical harmonics bases. We additionally find that a change of basis to canonicalize input representations with respect to inlet velocity substantially improves generalization. Altogether, these design choices lead to a purely data-driven machine learning framework known as GeoMPNN, which won the Best Student Submission award at the NeurIPS 2024 ML4CFD Competition, placing 4th overall. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).
Abstract:Recent advancements in large language models (LLMs) have extended their capabilities to handle long contexts. However, increasing the number of model layers and the length of input sequences significantly escalates the memory required to store key-value (KV) cache, posing challenges for efficient inference. To mitigate this issue, we present SimLayerKV, a simple yet effective method that reduces inter-layer KV cache redundancies by selectively dropping cache in identified lazy layers. Our approach is based on the observation that certain layers in long-context LLMs exhibit "lazy" behavior, contributing less to modeling long-range dependencies compared to non-lazy layers. By analyzing attention weight patterns, we find that the behavior of these lazy layers is consistent across tokens during generation for a given input. This insight motivates our SimLayerKV, which identifies lazy layers and reduces their KV cache accordingly. SimLayerKV is training-free, generalizable, and can be implemented with only seven lines of code. We conduct extensive experiments on three representative LLMs, e.g., LLaMA2-7B, LLaMA3-8B, and Mistral-7B across 16 tasks from the LongBench benchmark. The results demonstrate that SimLayerKV achieves a KV cache compression ratio of 5$\times$ with only a 1.2% performance drop when combined with 4-bit quantization. Our code is available at https://github.com/sail-sg/SimLayerKV.
Abstract:Artificial intelligence aids in brain tumor detection via MRI scans, enhancing the accuracy and reducing the workload of medical professionals. However, in scenarios with extremely limited medical images, traditional deep learning approaches tend to fail due to the absence of anomalous images. Anomaly detection also suffers from ineffective feature extraction due to vague training process. Our work introduces a novel two-stage anomaly detection algorithm called CONSULT (CONtrastive Self-sUpervised Learning for few-shot Tumor detection). The first stage of CONSULT fine-tunes a pre-trained feature extractor specifically for MRI brain images, using a synthetic data generation pipeline to create tumor-like data. This process overcomes the lack of anomaly samples and enables the integration of attention mechanisms to focus on anomalous image segments. The first stage is to overcome the shortcomings of current anomaly detection in extracting features in high-variation data by incorporating Context-Aware Contrastive Learning and Self-supervised Feature Adversarial Learning. The second stage of CONSULT uses PatchCore for conventional feature extraction via the fine-tuned weights from the first stage. To summarize, we propose a self-supervised training scheme for anomaly detection, enhancing model performance and data reliability. Furthermore, our proposed contrastive loss, Tritanh Loss, stabilizes learning by offering a unique solution all while enhancing gradient flow. Finally, CONSULT achieves superior performance in few-shot brain tumor detection, demonstrating significant improvements over PatchCore by 9.4%, 12.9%, 10.2%, and 6.0% for 2, 4, 6, and 8 shots, respectively, while training exclusively on healthy images.
Abstract:In real-world scenarios, deep learning models often face challenges from both imbalanced (long-tailed) and out-of-distribution (OOD) data. However, existing joint methods rely on real OOD data, which leads to unnecessary trade-offs. In contrast, our research shows that data mixing, a potent augmentation technique for long-tailed recognition, can generate pseudo-OOD data that exhibit the features of both in-distribution (ID) data and OOD data. Therefore, by using mixed data instead of real OOD data, we can address long-tailed recognition and OOD detection holistically. We propose a unified framework called Reinforced Imbalance Learning with Class-Aware Self-Supervised Outliers Exposure (RICASSO), where "self-supervised" denotes that we only use ID data for outlier exposure. RICASSO includes three main strategies: Norm-Odd-Duality-Based Outlier Exposure: Uses mixed data as pseudo-OOD data, enabling simultaneous ID data rebalancing and outlier exposure through a single loss function. Ambiguity-Aware Logits Adjustment: Utilizes the ambiguity of ID data to adaptively recalibrate logits. Contrastive Boundary-Center Learning: Combines Virtual Boundary Learning and Dual-Entropy Center Learning to use mixed data for better feature separation and clustering, with Representation Consistency Learning for robustness. Extensive experiments demonstrate that RICASSO achieves state-of-the-art performance in long-tailed recognition and significantly improves OOD detection compared to our baseline (27% improvement in AUROC and 61% reduction in FPR on the iNaturalist2018 dataset). On iNaturalist2018, we even outperforms methods using real OOD data. The code will be made public soon.
Abstract:Recent advancements in large language and vision-language models have significantly enhanced multimodal understanding, yet translating high-level linguistic instructions into precise robotic actions in 3D space remains challenging. This paper introduces IRIS (Interactive Responsive Intelligent Segmentation), a novel training-free multimodal system for 3D affordance segmentation, alongside a benchmark for evaluating interactive language-guided affordance in everyday environments. IRIS integrates a large multimodal model with a specialized 3D vision network, enabling seamless fusion of 2D and 3D visual understanding with language comprehension. To facilitate evaluation, we present a dataset of 10 typical indoor environments, each with 50 images annotated for object actions and 3D affordance segmentation. Extensive experiments demonstrate IRIS's capability in handling interactive 3D affordance segmentation tasks across diverse settings, showcasing competitive performance across various metrics. Our results highlight IRIS's potential for enhancing human-robot interaction based on affordance understanding in complex indoor environments, advancing the development of more intuitive and efficient robotic systems for real-world applications.
Abstract:The evolution of large language models (LLMs) has enhanced the planning capabilities of language agents in diverse real-world scenarios. Despite these advancements, the potential of LLM-powered agents to comprehend ambiguous user instructions for reasoning and decision-making is still under exploration. In this work, we introduce a new task, Proactive Agent Planning, which requires language agents to predict clarification needs based on user-agent conversation and agent-environment interaction, invoke external tools to collect valid information, and generate a plan to fulfill the user's demands. To study this practical problem, we establish a new benchmark dataset, Ask-before-Plan. To tackle the deficiency of LLMs in proactive planning, we propose a novel multi-agent framework, Clarification-Execution-Planning (\texttt{CEP}), which consists of three agents specialized in clarification, execution, and planning. We introduce the trajectory tuning scheme for the clarification agent and static execution agent, as well as the memory recollection mechanism for the dynamic execution agent. Extensive evaluations and comprehensive analyses conducted on the Ask-before-Plan dataset validate the effectiveness of our proposed framework.
Abstract:The recent development of chain-of-thought (CoT) decoding has enabled large language models (LLMs) to generate explicit logical reasoning paths for complex problem-solving. However, research indicates that these paths are not always deliberate and optimal. The tree-of-thought (ToT) method employs tree-searching to extensively explore the reasoning space and find better reasoning paths that CoT decoding might overlook. This deliberation, however, comes at the cost of significantly increased inference complexity. In this work, we demonstrate that fine-tuning LLMs leveraging the search tree constructed by ToT allows CoT to achieve similar or better performance, thereby avoiding the substantial inference burden. This is achieved through Chain of Preference Optimization (CPO), where LLMs are fine-tuned to align each step of the CoT reasoning paths with those of ToT using the inherent preference information in the tree-search process. Extensive experimental results show that CPO significantly improves LLM performance in solving a variety of complex problems, including question answering, fact verification, and arithmetic reasoning, demonstrating its effectiveness. Our code is available at https://github.com/sail-sg/CPO.