Abstract:Many medical image segmentation methods have achieved impressive results. Yet, most existing methods do not take into account the shape-intensity prior information. This may lead to implausible segmentation results, in particular for images of unseen datasets. In this paper, we propose a novel approach to incorporate joint shape-intensity prior information into the segmentation network. Specifically, we first train a segmentation network (regarded as the teacher network) on class-wise averaged training images to extract valuable shape-intensity information, which is then transferred to a student segmentation network with the same network architecture as the teacher via knowledge distillation. In this way, the student network regarded as the final segmentation model can effectively integrate the shape-intensity prior information, yielding more accurate segmentation results. Despite its simplicity, experiments on five medical image segmentation tasks of different modalities demonstrate that the proposed Shape-Intensity Knowledge Distillation (SIKD) consistently improves several baseline models (including recent MaxStyle and SAMed) under intra-dataset evaluation, and significantly improves the cross-dataset generalization ability. The code is available at https://github.com/whdong-whu/SIKD.
Abstract:The task of single-source domain generalization (SDG) in medical image segmentation is crucial due to frequent domain shifts in clinical image datasets. To address the challenge of poor generalization across different domains, we introduce a Plug-and-Play module for data augmentation called MoreStyle. MoreStyle diversifies image styles by relaxing low-frequency constraints in Fourier space, guiding the image reconstruction network. With the help of adversarial learning, MoreStyle further expands the style range and pinpoints the most intricate style combinations within latent features. To handle significant style variations, we introduce an uncertainty-weighted loss. This loss emphasizes hard-to-classify pixels resulting only from style shifts while mitigating true hard-to-classify pixels in both MoreStyle-generated and original images. Extensive experiments on two widely used benchmarks demonstrate that the proposed MoreStyle effectively helps to achieve good domain generalization ability, and has the potential to further boost the performance of some state-of-the-art SDG methods.
Abstract:Pulmonary nodules and masses are crucial imaging features in lung cancer screening that require careful management in clinical diagnosis. Despite the success of deep learning-based medical image segmentation, the robust performance on various sizes of lesions of nodule and mass is still challenging. In this paper, we propose a multi-scale neural network with scale-aware test-time adaptation to address this challenge. Specifically, we introduce an adaptive Scale-aware Test-time Click Adaptation method based on effortlessly obtainable lesion clicks as test-time cues to enhance segmentation performance, particularly for large lesions. The proposed method can be seamlessly integrated into existing networks. Extensive experiments on both open-source and in-house datasets consistently demonstrate the effectiveness of the proposed method over some CNN and Transformer-based segmentation methods. Our code is available at https://github.com/SplinterLi/SaTTCA
Abstract:DETR-like models have significantly boosted the performance of detectors and even outperformed classical convolutional models. However, all tokens are treated equally without discrimination brings a redundant computational burden in the traditional encoder structure. The recent sparsification strategies exploit a subset of informative tokens to reduce attention complexity maintaining performance through the sparse encoder. But these methods tend to rely on unreliable model statistics. Moreover, simply reducing the token population hinders the detection performance to a large extent, limiting the application of these sparse models. We propose Focus-DETR, which focuses attention on more informative tokens for a better trade-off between computation efficiency and model accuracy. Specifically, we reconstruct the encoder with dual attention, which includes a token scoring mechanism that considers both localization and category semantic information of the objects from multi-scale feature maps. We efficiently abandon the background queries and enhance the semantic interaction of the fine-grained object queries based on the scores. Compared with the state-of-the-art sparse DETR-like detectors under the same setting, our Focus-DETR gets comparable complexity while achieving 50.4AP (+2.2) on COCO. The code is available at https://github.com/huawei-noah/noah-research/tree/master/Focus-DETR and https://gitee.com/mindspore/models/tree/master/research/cv/Focus-DETR.