Abstract:Vision-Language Models (VLMs) bring powerful understanding and reasoning capabilities to multimodal tasks. Meanwhile, the great need for capable aritificial intelligence on mobile devices also arises, such as the AI assistant software. Some efforts try to migrate VLMs to edge devices to expand their application scope. Simplifying the model structure is a common method, but as the model shrinks, the trade-off between performance and size becomes more and more difficult. Knowledge distillation (KD) can help models improve comprehensive capabilities without increasing size or data volume. However, most of the existing large model distillation techniques only consider applications on single-modal LLMs, or only use teachers to create new data environments for students. None of these methods take into account the distillation of the most important cross-modal alignment knowledge in VLMs. We propose a method called Align-KD to guide the student model to learn the cross-modal matching that occurs at the shallow layer. The teacher also helps student learn the projection of vision token into text embedding space based on the focus of text. Under the guidance of Align-KD, the 1.7B MobileVLM V2 model can learn rich knowledge from the 7B teacher model with light design of training loss, and achieve an average score improvement of 2.0 across 6 benchmarks under two training subsets respectively. Code is available at: https://github.com/fqhank/Align-KD.
Abstract:Mamba has shown great potential for computer vision due to its linear complexity in modeling the global context with respect to the input length. However, existing lightweight Mamba-based backbones cannot demonstrate performance that matches Convolution or Transformer-based methods. We observe that simply modifying the scanning path in the image domain is not conducive to fully exploiting the potential of vision Mamba. In this paper, we first perform comprehensive spectral and quantitative analyses, and verify that the Mamba block mainly models low-frequency information under Convolution-Mamba hybrid architecture. Based on the analyses, we introduce a novel Laplace mixer to decouple the features in terms of frequency and input only the low-frequency components into the Mamba block. In addition, considering the redundancy of the features and the different requirements for high-frequency details and low-frequency global information at different stages, we introduce a frequency ramp inception, i.e., gradually reduce the input dimensions of the high-frequency branches, so as to efficiently trade-off the high-frequency and low-frequency components at different layers. By integrating mobile-friendly convolution and efficient Laplace mixer, we build a series of tiny hybrid vision Mamba called TinyViM. The proposed TinyViM achieves impressive performance on several downstream tasks including image classification, semantic segmentation, object detection and instance segmentation. In particular, TinyViM outperforms Convolution, Transformer and Mamba-based models with similar scales, and the throughput is about 2-3 times higher than that of other Mamba-based models. Code is available at https://github.com/xwmaxwma/TinyViM.
Abstract:Large language models (LLMs) have excelled in various NLP tasks, including machine translation (MT), yet most studies focus on sentence-level translation. This work investigates the inherent capability of instruction-tuned LLMs for document-level translation (docMT). Unlike prior approaches that require specialized techniques, we evaluate LLMs by directly prompting them to translate entire documents in a single pass. Our results show that this method improves translation quality compared to translating sentences separately, even without document-level fine-tuning. However, this advantage is not reflected in BLEU scores, which often favor sentence-based translations. We propose using the LLM-as-a-judge paradigm for evaluation, where GPT-4 is used to assess document coherence, accuracy, and fluency in a more nuanced way than n-gram-based metrics. Overall, our work demonstrates that instruction-tuned LLMs can effectively leverage document context for translation. However, we caution against using BLEU scores for evaluating docMT, as they often provide misleading outcomes, failing to capture the quality of document-level translation. Code and data are available at https://github.com/EIT-NLP/BLEUless_DocMT
Abstract:Reinforcement Learning from Human Feedback significantly enhances Natural Language Processing by aligning language models with human expectations. A critical factor in this alignment is the strength of reward models used during training. This study explores whether stronger reward models invariably lead to better language models. In this paper, through experiments on relevance, factuality, and completeness tasks using the QA-FEEDBACK dataset and reward models based on Longformer, we uncover a surprising paradox: language models trained with moderately accurate reward models outperform those guided by highly accurate ones. This challenges the widely held belief that stronger reward models always lead to better language models, and opens up new avenues for future research into the key factors driving model performance and how to choose the most suitable reward models. Code and additional details are available at [https://github.com/EIT-NLP/AccuracyParadox-RLHF](https://github.com/EIT-NLP/AccuracyParadox-RLHF).
Abstract:Weakly-supervised Temporal Action Localization (WSTAL) aims to localize actions in untrimmed videos using only video-level supervision. Latest WSTAL methods introduce pseudo label learning framework to bridge the gap between classification-based training and inferencing targets at localization, and achieve cutting-edge results. In these frameworks, a classification-based model is used to generate pseudo labels for a regression-based student model to learn from. However, the quality of pseudo labels in the framework, which is a key factor to the final result, is not carefully studied. In this paper, we propose a set of simple yet efficient pseudo label quality enhancement mechanisms to build our FuSTAL framework. FuSTAL enhances pseudo label quality at three stages: cross-video contrastive learning at proposal Generation-Stage, prior-based filtering at proposal Selection-Stage and EMA-based distillation at Training-Stage. These designs enhance pseudo label quality at different stages in the framework, and help produce more informative, less false and smoother action proposals. With the help of these comprehensive designs at all stages, FuSTAL achieves an average mAP of 50.8% on THUMOS'14, outperforming the previous best method by 1.2%, and becomes the first method to reach the milestone of 50%.
Abstract:Large language models (LLM) have recently attracted significant attention in the field of artificial intelligence. However, the training process of these models poses significant challenges in terms of computational and storage capacities, thus compressing checkpoints has become an urgent problem. In this paper, we propose a novel Extreme Checkpoint Compression (ExCP) framework, which significantly reduces the required storage of training checkpoints while achieving nearly lossless performance. We first calculate the residuals of adjacent checkpoints to obtain the essential but sparse information for higher compression ratio. To further excavate the redundancy parameters in checkpoints, we then propose a weight-momentum joint shrinking method to utilize another important information during the model optimization, i.e., momentum. In particular, we exploit the information of both model and optimizer to discard as many parameters as possible while preserving critical information to ensure optimal performance. Furthermore, we utilize non-uniform quantization to further compress the storage of checkpoints. We extensively evaluate our proposed ExCP framework on several models ranging from 410M to 7B parameters and demonstrate significant storage reduction while maintaining strong performance. For instance, we achieve approximately $70\times$ compression for the Pythia-410M model, with the final performance being as accurate as the original model on various downstream tasks. Codes will be available at https://github.com/Gaffey/ExCP.
Abstract:Cross-modal transformers have demonstrated superiority in various vision tasks by effectively integrating different modalities. This paper first critiques prior token exchange methods which replace less informative tokens with inter-modal features, and demonstrate exchange based methods underperform cross-attention mechanisms, while the computational demand of the latter inevitably restricts its use with longer sequences. To surmount the computational challenges, we propose GeminiFusion, a pixel-wise fusion approach that capitalizes on aligned cross-modal representations. GeminiFusion elegantly combines intra-modal and inter-modal attentions, dynamically integrating complementary information across modalities. We employ a layer-adaptive noise to adaptively control their interplay on a per-layer basis, thereby achieving a harmonized fusion process. Notably, GeminiFusion maintains linear complexity with respect to the number of input tokens, ensuring this multimodal framework operates with efficiency comparable to unimodal networks. Comprehensive evaluations across multimodal image-to-image translation, 3D object detection and arbitrary-modal semantic segmentation tasks, including RGB, depth, LiDAR, event data, etc. demonstrate the superior performance of our GeminiFusion against leading-edge techniques. The PyTorch code is available at https://github.com/JiaDingCN/GeminiFusion
Abstract:Transformers have become foundational architectures for both natural language and computer vision tasks. However, the high computational cost makes it quite challenging to deploy on resource-constraint devices. This paper investigates the computational bottleneck modules of efficient transformer, i.e., normalization layers and attention modules. LayerNorm is commonly used in transformer architectures but is not computational friendly due to statistic calculation during inference. However, replacing LayerNorm with more efficient BatchNorm in transformer often leads to inferior performance and collapse in training. To address this problem, we propose a novel method named PRepBN to progressively replace LayerNorm with re-parameterized BatchNorm in training. Moreover, we propose a simplified linear attention (SLA) module that is simple yet effective to achieve strong performance. Extensive experiments on image classification as well as object detection demonstrate the effectiveness of our proposed method. For example, our SLAB-Swin obtains $83.6\%$ top-1 accuracy on ImageNet-1K with $16.2$ms latency, which is $2.4$ms less than that of Flatten-Swin with $0.1\%$ higher accuracy. We also evaluated our method for language modeling task and obtain comparable performance and lower latency.Codes are publicly available at https://github.com/xinghaochen/SLAB and https://github.com/mindspore-lab/models/tree/master/research/huawei-noah/SLAB.
Abstract:Current architectures for video understanding mainly build upon 3D convolutional blocks or 2D convolutions with additional operations for temporal modeling. However, these methods all regard the temporal axis as a separate dimension of the video sequence, which requires large computation and memory budgets and thus limits their usage on mobile devices. In this paper, we propose to squeeze the time axis of a video sequence into the channel dimension and present a lightweight video recognition network, term as \textit{SqueezeTime}, for mobile video understanding. To enhance the temporal modeling capability of the proposed network, we design a Channel-Time Learning (CTL) Block to capture temporal dynamics of the sequence. This module has two complementary branches, in which one branch is for temporal importance learning and another branch with temporal position restoring capability is to enhance inter-temporal object modeling ability. The proposed SqueezeTime is much lightweight and fast with high accuracies for mobile video understanding. Extensive experiments on various video recognition and action detection benchmarks, i.e., Kinetics400, Kinetics600, HMDB51, AVA2.1 and THUMOS14, demonstrate the superiority of our model. For example, our SqueezeTime achieves $+1.2\%$ accuracy and $+80\%$ GPU throughput gain on Kinetics400 than prior methods. Codes are publicly available at https://github.com/xinghaochen/SqueezeTime and https://github.com/mindspore-lab/models/tree/master/research/huawei-noah/SqueezeTime.
Abstract:Semantic segmentation is an important task for many applications but it is still quite challenging to achieve advanced performance with limited computational costs. In this paper, we present CGRSeg, an efficient yet competitive segmentation framework based on context-guided spatial feature reconstruction. A Rectangular Self-Calibration Module is carefully designed for spatial feature reconstruction and pyramid context extraction. It captures the global context in both horizontal and vertical directions and gets the axial global context to explicitly model rectangular key areas. A shape self-calibration function is designed to make the key areas more close to the foreground object. Besides, a lightweight Dynamic Prototype Guided head is proposed to improve the classification of foreground objects by explicit class embedding. Our CGRSeg is extensively evaluated on ADE20K, COCO-Stuff, and Pascal Context benchmarks, and achieves state-of-the-art semantic performance. Specifically, it achieves $43.6\%$ mIoU on ADE20K with only $4.0$ GFLOPs, which is $0.9\%$ and $2.5\%$ mIoU better than SeaFormer and SegNeXt but with about $38.0\%$ fewer GFLOPs. Code is available at https://github.com/nizhenliang/CGRSeg.