Abstract:The rapid progress in Deep Learning (DL) and Large Language Models (LLMs) has exponentially increased demands of computational power and bandwidth. This, combined with the high costs of faster computing chips and interconnects, has significantly inflated High Performance Computing (HPC) construction costs. To address these challenges, we introduce the Fire-Flyer AI-HPC architecture, a synergistic hardware-software co-design framework and its best practices. For DL training, we deployed the Fire-Flyer 2 with 10,000 PCIe A100 GPUs, achieved performance approximating the DGX-A100 while reducing costs by half and energy consumption by 40%. We specifically engineered HFReduce to accelerate allreduce communication and implemented numerous measures to keep our Computation-Storage Integrated Network congestion-free. Through our software stack, including HaiScale, 3FS, and HAI-Platform, we achieved substantial scalability by overlapping computation and communication. Our system-oriented experience from DL training provides valuable insights to drive future advancements in AI-HPC.
Abstract:We introduce DeepSeek-Prover-V1.5, an open-source language model designed for theorem proving in Lean 4, which enhances DeepSeek-Prover-V1 by optimizing both training and inference processes. Pre-trained on DeepSeekMath-Base with specialization in formal mathematical languages, the model undergoes supervised fine-tuning using an enhanced formal theorem proving dataset derived from DeepSeek-Prover-V1. Further refinement is achieved through reinforcement learning from proof assistant feedback (RLPAF). Beyond the single-pass whole-proof generation approach of DeepSeek-Prover-V1, we propose RMaxTS, a variant of Monte-Carlo tree search that employs an intrinsic-reward-driven exploration strategy to generate diverse proof paths. DeepSeek-Prover-V1.5 demonstrates significant improvements over DeepSeek-Prover-V1, achieving new state-of-the-art results on the test set of the high school level miniF2F benchmark ($63.5\%$) and the undergraduate level ProofNet benchmark ($25.3\%$).
Abstract:Graph Convolutional Neural Network (GCN), a widely adopted method for analyzing relational data, enhances node discriminability through the aggregation of neighboring information. Usually, stacking multiple layers can improve the performance of GCN by leveraging information from high-order neighbors. However, the increase of the network depth will induce the over-smoothing problem, which can be attributed to the quality and quantity of neighbors changing: (a) neighbor quality, node's neighbors become overlapping in high order, leading to aggregated information becoming indistinguishable, (b) neighbor quantity, the exponentially growing aggregated neighbors submerges the node's initial feature by recursively aggregating operations. Current solutions mainly focus on one of the above causes and seldom consider both at once. Aiming at tackling both causes of over-smoothing in one shot, we introduce a simple Two-Sided Constraint (TSC) for GCNs, comprising two straightforward yet potent techniques: random masking and contrastive constraint. The random masking acts on the representation matrix's columns to regulate the degree of information aggregation from neighbors, thus preventing the convergence of node representations. Meanwhile, the contrastive constraint, applied to the representation matrix's rows, enhances the discriminability of the nodes. Designed as a plug-in module, TSC can be easily coupled with GCN or SGC architectures. Experimental analyses on diverse real-world graph datasets verify that our approach markedly reduces the convergence of node's representation and the performance degradation in deeper GCN.
Abstract:We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K. In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks.
Abstract:In the rapidly evolving landscape of social media, the introduction of new emojis in Unicode release versions presents a structured opportunity to explore digital language evolution. Analyzing a large dataset of sampled English tweets, we examine how newly released emojis gain traction and evolve in meaning. We find that community size of early adopters and emoji semantics are crucial in determining their popularity. Certain emojis experienced notable shifts in the meanings and sentiment associations during the diffusion process. Additionally, we propose a novel framework utilizing language models to extract words and pre-existing emojis with semantically similar contexts, which enhances interpretation of new emojis. The framework demonstrates its effectiveness in improving sentiment classification performance by substituting unknown new emojis with familiar ones. This study offers a new perspective in understanding how new language units are adopted, adapted, and integrated into the fabric of online communication.
Abstract:Emojis, which encapsulate semantics beyond mere words or phrases, have become prevalent in social network communications. This has spurred increasing scholarly interest in exploring their attributes and functionalities. However, emoji-related research and application face two primary challenges. First, researchers typically rely on crowd-sourcing to annotate emojis in order to understand their sentiments, usage intentions, and semantic meanings. Second, subjective interpretations by users can often lead to misunderstandings of emojis and cause the communication barrier. Large Language Models (LLMs) have achieved significant success in various annotation tasks, with ChatGPT demonstrating expertise across multiple domains. In our study, we assess ChatGPT's effectiveness in handling previously annotated and downstream tasks. Our objective is to validate the hypothesis that ChatGPT can serve as a viable alternative to human annotators in emoji research and that its ability to explain emoji meanings can enhance clarity and transparency in online communications. Our findings indicate that ChatGPT has extensive knowledge of emojis. It is adept at elucidating the meaning of emojis across various application scenarios and demonstrates the potential to replace human annotators in a range of tasks.
Abstract:Although remote working is increasingly adopted during the pandemic, many are concerned by the low-efficiency in the remote working. Missing in text-based communication are non-verbal cues such as facial expressions and body language, which hinders the effective communication and negatively impacts the work outcomes. Prevalent on social media platforms, emojis, as alternative non-verbal cues, are gaining popularity in the virtual workspaces well. In this paper, we study how emoji usage influences developer participation and issue resolution in virtual workspaces. To this end, we collect GitHub issues for a one-year period and apply causal inference techniques to measure the causal effect of emojis on the outcome of issues, controlling for confounders such as issue content, repository, and author information. We find that emojis can significantly reduce the resolution time of issues and attract more user participation. We also compare the heterogeneous effect on different types of issues. These findings deepen our understanding of the developer communities, and they provide design implications on how to facilitate interactions and broaden developer participation.
Abstract:While many organizations have shifted to working remotely during the COVID-19 pandemic, how the remote workforce and the remote teams are influenced by and would respond to this and future shocks remain largely unknown. Software developers have relied on remote collaborations long before the pandemic, working in virtual teams (GitHub repositories). The dynamics of these repositories through the pandemic provide a unique opportunity to understand how remote teams react under shock. This work presents a systematic analysis. We measure the overall effect of the early pandemic on public GitHub repositories by comparing their sizes and productivity with the counterfactual outcomes forecasted as if there were no pandemic. We find that the productivity level and the number of active members of these teams vary significantly during different periods of the pandemic. We then conduct a finer-grained investigation and study the heterogeneous effects of the shock on individual teams. We find that the resilience of a team is highly correlated to certain properties of the team before the pandemic. Through a bootstrapped regression analysis, we reveal which types of teams are robust or fragile to the shock.
Abstract:Emotions at work have long been identified as critical signals of work motivations, status, and attitudes, and as predictors of various work-related outcomes. For example, harmonious passion increases commitment at work but stress reduces sustainability and leads to burnouts. When more and more employees work remotely, these emotional and mental health signals of workers become harder to observe through daily, face-to-face communications. The use of online platforms to communicate and collaborate at work provides an alternative channel to monitor the emotions of workers. This paper studies how emojis, as non-verbal cues in online communications, can be used for such purposes. In particular, we study how the developers on GitHub use emojis in their work-related activities. We show that developers have diverse patterns of emoji usage, which highly correlate to their working status including activity levels, types of work, types of communications, time management, and other behavioral patterns. Developers who use emojis in their posts are significantly less likely to dropout from the online work platform. Surprisingly, solely using emoji usage as features, standard machine learning models can predict future dropouts of developers at a satisfactory accuracy.
Abstract:Sentiment analysis has various application scenarios in software engineering (SE), such as detecting developers' emotions in commit messages and identifying their opinions on Q&A forums. However, commonly used out-of-the-box sentiment analysis tools cannot obtain reliable results on SE tasks and the misunderstanding of technical jargon is demonstrated to be the main reason. Then, researchers have to utilize labeled SE-related texts to customize sentiment analysis for SE tasks via a variety of algorithms. However, the scarce labeled data can cover only very limited expressions and thus cannot guarantee the analysis quality. To address such a problem, we turn to the easily available emoji usage data for help. More specifically, we employ emotional emojis as noisy labels of sentiments and propose a representation learning approach that uses both Tweets and GitHub posts containing emojis to learn sentiment-aware representations for SE-related texts. These emoji-labeled posts can not only supply the technical jargon, but also incorporate more general sentiment patterns shared across domains. They as well as labeled data are used to learn the final sentiment classifier. Compared to the existing sentiment analysis methods used in SE, the proposed approach can achieve significant improvement on representative benchmark datasets. By further contrast experiments, we find that the Tweets make a key contribution to the power of our approach. This finding informs future research not to unilaterally pursue the domain-specific resource, but try to transform knowledge from the open domain through ubiquitous signals such as emojis.