Abstract:Given the large volume of side information from different modalities, multimodal recommender systems have become increasingly vital, as they exploit richer semantic information beyond user-item interactions. Recent works highlight that leveraging Graph Convolutional Networks (GCNs) to explicitly model multimodal item-item relations can significantly enhance recommendation performance. However, due to the inherent over-smoothing issue of GCNs, existing models benefit only from shallow GCNs with limited representation power. This drawback is especially pronounced when facing complex and high-dimensional patterns such as multimodal data, as it requires large-capacity models to accommodate complicated correlations. To this end, in this paper, we investigate bypassing GCNs when modeling multimodal item-item relationship. More specifically, we propose a Topology-aware Multi-Layer Perceptron (TMLP), which uses MLPs instead of GCNs to model the relationships between items. TMLP enhances MLPs with topological pruning to denoise item-item relations and intra (inter)-modality learning to integrate higher-order modality correlations. Extensive experiments on three real-world datasets verify TMLP's superiority over nine baselines. We also find that by discarding the internal message passing in GCNs, which is sensitive to node connections, TMLP achieves significant improvements in both training efficiency and robustness against existing models.
Abstract:Recommender systems (RS) are pivotal in managing information overload in modern digital services. A key challenge in RS is efficiently processing vast item pools to deliver highly personalized recommendations under strict latency constraints. Multi-stage cascade ranking addresses this by employing computationally efficient retrieval methods to cover diverse user interests, followed by more precise ranking models to refine the results. In the retrieval stage, multi-channel retrieval is often used to generate distinct item subsets from different candidate generators, leveraging the complementary strengths of these methods to maximize coverage. However, forwarding all retrieved items overwhelms downstream rankers, necessitating truncation. Despite advancements in individual retrieval methods, multi-channel fusion, the process of efficiently merging multi-channel retrieval results, remains underexplored. We are the first to identify and systematically investigate multi-channel fusion in the retrieval stage. Current industry practices often rely on heuristic approaches and manual designs, which often lead to suboptimal performance. Moreover, traditional gradient-based methods like SGD are unsuitable for this task due to the non-differentiable nature of the selection process. In this paper, we explore advanced channel fusion strategies by assigning systematically optimized weights to each channel. We utilize black-box optimization techniques, including the Cross Entropy Method and Bayesian Optimization for global weight optimization, alongside policy gradient-based approaches for personalized merging. Our methods enhance both personalization and flexibility, achieving significant performance improvements across multiple datasets and yielding substantial gains in real-world deployments, offering a scalable solution for optimizing multi-channel fusion in retrieval.
Abstract:Recommender systems (RS) are vital for managing information overload and delivering personalized content, responding to users' diverse information needs. The emergence of large language models (LLMs) offers a new horizon for redefining recommender systems with vast general knowledge and reasoning capabilities. Standing across this LLM era, we aim to integrate recommender systems into a broader picture, and pave the way for more comprehensive solutions for future research. Therefore, we first offer a comprehensive overview of the technical progression of recommender systems, particularly focusing on language foundation models and their applications in recommendation. We identify two evolution paths of modern recommender systems -- via list-wise recommendation and conversational recommendation. These two paths finally converge at LLM agents with superior capabilities of long-term memory, reflection, and tool intelligence. Along these two paths, we point out that the information effectiveness of the recommendation is increased, while the user's acquisition cost is decreased. Technical features, research methodologies, and inherent challenges for each milestone along the path are carefully investigated -- from traditional list-wise recommendation to LLM-enhanced recommendation to recommendation with LLM agents. Finally, we highlight several unresolved challenges crucial for the development of future personalization technologies and interfaces and discuss the future prospects.
Abstract:Click-through rate (CTR) prediction plays an important role in personalized recommendations. Recently, sample-level retrieval-based models (e.g., RIM) have achieved remarkable performance by retrieving and aggregating relevant samples. However, their inefficiency at the inference stage makes them impractical for industrial applications. To overcome this issue, this paper proposes a universal plug-and-play Retrieval-Oriented Knowledge (ROK) framework. Specifically, a knowledge base, consisting of a retrieval-oriented embedding layer and a knowledge encoder, is designed to preserve and imitate the retrieved & aggregated representations in a decomposition-reconstruction paradigm. Knowledge distillation and contrastive learning methods are utilized to optimize the knowledge base, and the learned retrieval-enhanced representations can be integrated with arbitrary CTR models in both instance-wise and feature-wise manners. Extensive experiments on three large-scale datasets show that ROK achieves competitive performance with the retrieval-based CTR models while reserving superior inference efficiency and model compatibility.
Abstract:We primarily focus on the field of multi-scenario recommendation, which poses a significant challenge in effectively leveraging data from different scenarios to enhance predictions in scenarios with limited data. Current mainstream efforts mainly center around innovative model network architectures, with the aim of enabling the network to implicitly acquire knowledge from diverse scenarios. However, the uncertainty of implicit learning in networks arises from the absence of explicit modeling, leading to not only difficulty in training but also incomplete user representation and suboptimal performance. Furthermore, through causal graph analysis, we have discovered that the scenario itself directly influences click behavior, yet existing approaches directly incorporate data from other scenarios during the training of the current scenario, leading to prediction biases when they directly utilize click behaviors from other scenarios to train models. To address these problems, we propose the Multi-Scenario Causal-driven Adaptive Network M-scan). This model incorporates a Scenario-Aware Co-Attention mechanism that explicitly extracts user interests from other scenarios that align with the current scenario. Additionally, it employs a Scenario Bias Eliminator module utilizing causal counterfactual inference to mitigate biases introduced by data from other scenarios. Extensive experiments on two public datasets demonstrate the efficacy of our M-scan compared to the existing baseline models.
Abstract:A vast amount of user behavior data is constantly accumulating on today's large recommendation platforms, recording users' various interests and tastes. Preserving knowledge from the old data while new data continually arrives is a vital problem for recommender systems. Existing approaches generally seek to save the knowledge implicitly in the model parameters. However, such a parameter-centric approach lacks scalability and flexibility -- the capacity is hard to scale, and the knowledge is inflexible to utilize. Hence, in this work, we propose a framework that turns massive user behavior data to retrievable knowledge (D2K). It is a data-centric approach that is model-agnostic and easy to scale up. Different from only storing unary knowledge such as the user-side or item-side information, D2K propose to store ternary knowledge for recommendation, which is determined by the complete recommendation factors -- user, item, and context. The knowledge retrieved by target samples can be directly used to enhance the performance of any recommendation algorithms. Specifically, we introduce a Transformer-based knowledge encoder to transform the old data into knowledge with the user-item-context cross features. A personalized knowledge adaptation unit is devised to effectively exploit the information from the knowledge base by adapting the retrieved knowledge to the target samples. Extensive experiments on two public datasets show that D2K significantly outperforms existing baselines and is compatible with a major collection of recommendation algorithms.
Abstract:User Behavior Modeling (UBM) plays a critical role in user interest learning, which has been extensively used in recommender systems. Crucial interactive patterns between users and items have been exploited, which brings compelling improvements in many recommendation tasks. In this paper, we attempt to provide a thorough survey of this research topic. We start by reviewing the research background of UBM. Then, we provide a systematic taxonomy of existing UBM research works, which can be categorized into four different directions including Conventional UBM, Long-Sequence UBM, Multi-Type UBM, and UBM with Side Information. Within each direction, representative models and their strengths and weaknesses are comprehensively discussed. Besides, we elaborate on the industrial practices of UBM methods with the hope of providing insights into the application value of existing UBM solutions. Finally, we summarize the survey and discuss the future prospects of this field.
Abstract:Sequential recommendation (SR) plays an important role in personalized recommender systems because it captures dynamic and diverse preferences from users' real-time increasing behaviors. Unlike the standard autoregressive training strategy, future data (also available during training) has been used to facilitate model training as it provides richer signals about user's current interests and can be used to improve the recommendation quality. However, these methods suffer from a severe training-inference gap, i.e., both past and future contexts are modeled by the same encoder when training, while only historical behaviors are available during inference. This discrepancy leads to potential performance degradation. To alleviate the training-inference gap, we propose a new framework DualRec, which achieves past-future disentanglement and past-future mutual enhancement by a novel dual network. Specifically, a dual network structure is exploited to model the past and future context separately. And a bi-directional knowledge transferring mechanism enhances the knowledge learnt by the dual network. Extensive experiments on four real-world datasets demonstrate the superiority of our approach over baseline methods. Besides, we demonstrate the compatibility of DualRec by instantiating using RNN, Transformer, and filter-MLP as backbones. Further empirical analysis verifies the high utility of modeling future contexts under our DualRec framework.
Abstract:As the final stage of the multi-stage recommender system (MRS), re-ranking directly affects user experience and satisfaction by rearranging the input ranking lists, and thereby plays a critical role in MRS. With the advances in deep learning, neural re-ranking has become a trending topic and been widely applied in industrial applications. This review aims at integrating re-ranking algorithms into a broader picture, and paving ways for more comprehensive solutions for future research. For this purpose, we first present a taxonomy of current methods on neural re-ranking. Then we give a description of these methods along with the historic development according to their objectives. The network structure, personalization, and complexity are also discussed and compared. Next, we provide benchmarks of the major neural re-ranking models and quantitatively analyze their re-ranking performance. Finally, the review concludes with a discussion on future prospects of this field. A list of papers discussed in this review, the benchmark datasets, our re-ranking library LibRerank, and detailed parameter settings are publicly available at https://github.com/LibRerank-Community/LibRerank.
Abstract:CTR prediction is essential for modern recommender systems. Ranging from early factorization machines to deep learning based models in recent years, existing CTR methods focus on capturing useful feature interactions or mining important behavior patterns. Despite the effectiveness, we argue that these methods suffer from the risk of label sparsity (i.e., the user-item interactions are highly sparse with respect to the feature space), label noise (i.e., the collected user-item interactions are usually noisy), and the underuse of domain knowledge (i.e., the pairwise correlations between samples). To address these challenging problems, we propose a novel Multi-Interest Self-Supervised learning (MISS) framework which enhances the feature embeddings with interest-level self-supervision signals. With the help of two novel CNN-based multi-interest extractors,self-supervision signals are discovered with full considerations of different interest representations (point-wise and union-wise), interest dependencies (short-range and long-range), and interest correlations (inter-item and intra-item). Based on that, contrastive learning losses are further applied to the augmented views of interest representations, which effectively improves the feature representation learning. Furthermore, our proposed MISS framework can be used as an plug-in component with existing CTR prediction models and further boost their performances. Extensive experiments on three large-scale datasets show that MISS significantly outperforms the state-of-the-art models, by up to 13.55% in AUC, and also enjoys good compatibility with representative deep CTR models.