Abstract:We present Pangu Ultra, a Large Language Model (LLM) with 135 billion parameters and dense Transformer modules trained on Ascend Neural Processing Units (NPUs). Although the field of LLM has been witnessing unprecedented advances in pushing the scale and capability of LLM in recent years, training such a large-scale model still involves significant optimization and system challenges. To stabilize the training process, we propose depth-scaled sandwich normalization, which effectively eliminates loss spikes during the training process of deep models. We pre-train our model on 13.2 trillion diverse and high-quality tokens and further enhance its reasoning capabilities during post-training. To perform such large-scale training efficiently, we utilize 8,192 Ascend NPUs with a series of system optimizations. Evaluations on multiple diverse benchmarks indicate that Pangu Ultra significantly advances the state-of-the-art capabilities of dense LLMs such as Llama 405B and Mistral Large 2, and even achieves competitive results with DeepSeek-R1, whose sparse model structure contains much more parameters. Our exploration demonstrates that Ascend NPUs are capable of efficiently and effectively training dense models with more than 100 billion parameters. Our model and system will be available for our commercial customers.
Abstract:Knowledge Tracing (KT) monitors students' knowledge states and simulates their responses to question sequences. Existing KT models typically follow a single-step training paradigm, which leads to discrepancies with the multi-step inference process required in real-world simulations, resulting in significant error accumulation. This accumulation of error, coupled with the issue of data sparsity, can substantially degrade the performance of recommendation models in the intelligent tutoring systems. To address these challenges, we propose a novel Adversarial Multi-Step Training Framework for Knowledge Tracing (AdvKT), which, for the first time, focuses on the multi-step KT task. More specifically, AdvKT leverages adversarial learning paradigm involving a generator and a discriminator. The generator mimics high-reward responses, effectively reducing error accumulation across multiple steps, while the discriminator provides feedback to generate synthetic data. Additionally, we design specialized data augmentation techniques to enrich the training data with realistic variations, ensuring that the model generalizes well even in scenarios with sparse data. Experiments conducted on four real-world datasets demonstrate the superiority of AdvKT over existing KT models, showcasing its ability to address both error accumulation and data sparsity issues effectively.
Abstract:Tool learning, which allows Large Language Models (LLMs) to leverage external tools for solving complex user tasks, has emerged as a promising avenue for extending model capabilities. However, current approaches primarily focus on data synthesis for fine-tuning LLMs to invoke tools effectively, largely ignoring how to fully stimulate the potential of the model. In this paper, we propose ToolACE-R, a novel method that introduces adaptive self-refinement for tool invocations. Our approach features a model-aware iterative training procedure that progressively incorporates more training samples based on the model's evolving capabilities. Additionally, it allows LLMs to iteratively refine their tool calls, optimizing performance without requiring external feedback. To further enhance computational efficiency, we integrate an adaptive mechanism when scaling the inference time, enabling the model to autonomously determine when to stop the refinement process. We conduct extensive experiments across several benchmark datasets, showing that ToolACE-R achieves competitive performance compared to advanced API-based models, even without any refinement. Furthermore, its performance can be further improved efficiently through adaptive self-refinement. Our results demonstrate the effectiveness of the proposed method, which is compatible with base models of various sizes, offering a promising direction for more efficient tool learning.
Abstract:In today's digital landscape, Deep Recommender Systems (DRS) play a crucial role in navigating and customizing online content for individual preferences. However, conventional methods, which mainly depend on single recommendation task, scenario, data modality and user behavior, are increasingly seen as insufficient due to their inability to accurately reflect users' complex and changing preferences. This gap underscores the need for joint modeling approaches, which are central to overcoming these limitations by integrating diverse tasks, scenarios, modalities, and behaviors in the recommendation process, thus promising significant enhancements in recommendation precision, efficiency, and customization. In this paper, we comprehensively survey the joint modeling methods in recommendations. We begin by defining the scope of joint modeling through four distinct dimensions: multi-task, multi-scenario, multi-modal, and multi-behavior modeling. Subsequently, we examine these methods in depth, identifying and summarizing their underlying paradigms based on the latest advancements and potential research trajectories. Ultimately, we highlight several promising avenues for future exploration in joint modeling for recommendations and provide a concise conclusion to our findings.
Abstract:In the era of information overload, recommendation systems play a pivotal role in filtering data and delivering personalized content. Recent advancements in feature interaction and user behavior modeling have significantly enhanced the recall and ranking processes of these systems. With the rise of large language models (LLMs), new opportunities have emerged to further improve recommendation systems. This tutorial explores two primary approaches for integrating LLMs: LLMs-enhanced recommendations, which leverage the reasoning capabilities of general LLMs, and generative large recommendation models, which focus on scaling and sophistication. While the former has been extensively covered in existing literature, the latter remains underexplored. This tutorial aims to fill this gap by providing a comprehensive overview of generative large recommendation models, including their recent advancements, challenges, and potential research directions. Key topics include data quality, scaling laws, user behavior mining, and efficiency in training and inference. By engaging with this tutorial, participants will gain insights into the latest developments and future opportunities in the field, aiding both academic research and practical applications. The timely nature of this exploration supports the rapid evolution of recommendation systems, offering valuable guidance for researchers and practitioners alike.
Abstract:Tagging systems play an essential role in various information retrieval applications such as search engines and recommender systems. Recently, Large Language Models (LLMs) have been applied in tagging systems due to their extensive world knowledge, semantic understanding, and reasoning capabilities. Despite achieving remarkable performance, existing methods still have limitations, including difficulties in retrieving relevant candidate tags comprehensively, challenges in adapting to emerging domain-specific knowledge, and the lack of reliable tag confidence quantification. To address these three limitations above, we propose an automatic tagging system LLM4Tag. First, a graph-based tag recall module is designed to effectively and comprehensively construct a small-scale highly relevant candidate tag set. Subsequently, a knowledge-enhanced tag generation module is employed to generate accurate tags with long-term and short-term knowledge injection. Finally, a tag confidence calibration module is introduced to generate reliable tag confidence scores. Extensive experiments over three large-scale industrial datasets show that LLM4Tag significantly outperforms the state-of-the-art baselines and LLM4Tag has been deployed online for content tagging to serve hundreds of millions of users.
Abstract:Large language models (LLMs) have shown remarkable emergent capabilities, transforming the execution of functional tasks by leveraging external tools for complex problems that require specialized processing or real-time data. While existing research expands LLMs access to diverse tools (e.g., program interpreters, search engines, weather/map apps), the necessity of using these tools is often overlooked, leading to indiscriminate tool invocation. This naive approach raises two key issues:(1) increased delays due to unnecessary tool calls, and (2) potential errors resulting from faulty interactions with external tools. In this paper, we introduce meta-cognition as a proxy for LLMs self-assessment of their capabilities, representing the model's awareness of its own limitations. Based on this, we propose MeCo, an adaptive decision-making strategy for external tool use. MeCo quantifies metacognitive scores by capturing high-level cognitive signals in the representation space, guiding when to invoke tools. Notably, MeCo is fine-tuning-free and incurs minimal cost. Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making across multiple base models and benchmarks.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities in various domains, particularly in system 1 tasks, yet the intricacies of their problem-solving mechanisms in system 2 tasks are not sufficiently explored. Recent research on System2-to-System1 methods surge, exploring the System 2 reasoning knowledge via inference-time computation and compressing the explored knowledge into System 1 process. In this paper, we focus on code generation, which is a representative System 2 task, and identify two primary challenges: (1) the complex hidden reasoning processes and (2) the heterogeneous data distributions that complicate the exploration and training of robust LLM solvers. To tackle these issues, we propose a novel BDC framework that explores insightful System 2 knowledge of LLMs using a MC-Tree-Of-Agents algorithm with mutual \textbf{B}oosting, \textbf{D}isentangles the heterogeneous training data for composable LoRA-experts, and obtain \textbf{C}ustomized problem solver for each data instance with an input-aware hypernetwork to weight over the LoRA-experts, offering effectiveness, flexibility, and robustness. This framework leverages multiple LLMs through mutual verification and boosting, integrated into a Monte-Carlo Tree Search process enhanced by reflection-based pruning and refinement. Additionally, we introduce the DisenLora algorithm, which clusters heterogeneous data to fine-tune LLMs into composable Lora experts, enabling the adaptive generation of customized problem solvers through an input-aware hypernetwork. This work lays the groundwork for advancing LLM capabilities in complex reasoning tasks, offering a novel System2-to-System1 solution.
Abstract:LLM-as-a-Judge, which generates chain-of-thought (CoT) judgments, has become a widely adopted auto-evaluation method. However, its reliability is compromised by the CoT reasoning's inability to capture comprehensive and deeper details, often leading to incomplete outcomes. Existing methods mainly rely on majority voting or criteria expansion, which is insufficient to address the limitation in CoT. We propose Crowd-based Comparative Evaluation, which introduces additional crowd responses to compare with the candidate responses, thereby exposing deeper and more comprehensive details within the candidate responses. This process effectively guides LLM-as-a-Judge to provide a more detailed CoT judgment. Extensive experiments demonstrate that our approach enhances evaluation reliability, achieving an average accuracy gain of 6.7% across five benchmarks. Moreover, our method produces higher-quality CoTs that facilitate judge distillation and exhibit superior performance in rejection sampling for supervised fine-tuning (SFT), referred to as crowd rejection sampling, thereby enabling more efficient SFT. Our analysis confirms that CoTs generated by ours are more comprehensive and of higher quality, and evaluation accuracy improves as inference scales.
Abstract:Inspired by scaling laws and large language models, research on large-scale recommendation models has gained significant attention. Recent advancements have shown that expanding sequential recommendation models to large-scale recommendation models can be an effective strategy. Current state-of-the-art sequential recommendation models primarily use self-attention mechanisms for explicit feature interactions among items, while implicit interactions are managed through Feed-Forward Networks (FFNs). However, these models often inadequately integrate temporal and positional information, either by adding them to attention weights or by blending them with latent representations, which limits their expressive power. A recent model, HSTU, further reduces the focus on implicit feature interactions, constraining its performance. We propose a new model called FuXi-$\alpha$ to address these issues. This model introduces an Adaptive Multi-channel Self-attention mechanism that distinctly models temporal, positional, and semantic features, along with a Multi-stage FFN to enhance implicit feature interactions. Our offline experiments demonstrate that our model outperforms existing models, with its performance continuously improving as the model size increases. Additionally, we conducted an online A/B test within the Huawei Music app, which showed a $4.76\%$ increase in the average number of songs played per user and a $5.10\%$ increase in the average listening duration per user. Our code has been released at https://github.com/USTC-StarTeam/FuXi-alpha.