Abstract:Click-Through Rate (CTR) prediction is a fundamental technique for online advertising recommendation and the complex online competitive auction process also brings many difficulties to CTR optimization. Recent studies have shown that introducing posterior auction information contributes to the performance of CTR prediction. However, existing work doesn't fully capitalize on the benefits of auction information and overlooks the data bias brought by the auction, leading to biased and suboptimal results. To address these limitations, we propose Auction Information Enhanced Framework (AIE) for CTR prediction in online advertising, which delves into the problem of insufficient utilization of auction signals and first reveals the auction bias. Specifically, AIE introduces two pluggable modules, namely Adaptive Market-price Auxiliary Module (AM2) and Bid Calibration Module (BCM), which work collaboratively to excavate the posterior auction signals better and enhance the performance of CTR prediction. Furthermore, the two proposed modules are lightweight, model-agnostic, and friendly to inference latency. Extensive experiments are conducted on a public dataset and an industrial dataset to demonstrate the effectiveness and compatibility of AIE. Besides, a one-month online A/B test in a large-scale advertising platform shows that AIE improves the base model by 5.76% and 2.44% in terms of eCPM and CTR, respectively.
Abstract:Recently, increasing attention has been paid to LLM-based recommender systems, but their deployment is still under exploration in the industry. Most deployments utilize LLMs as feature enhancers, generating augmentation knowledge in the offline stage. However, in recommendation scenarios, involving numerous users and items, even offline generation with LLMs consumes considerable time and resources. This generation inefficiency stems from the autoregressive nature of LLMs, and a promising direction for acceleration is speculative decoding, a Draft-then-Verify paradigm that increases the number of generated tokens per decoding step. In this paper, we first identify that recommendation knowledge generation is suitable for retrieval-based speculative decoding. Then, we discern two characteristics: (1) extensive items and users in RSs bring retrieval inefficiency, and (2) RSs exhibit high diversity tolerance for text generated by LLMs. Based on the above insights, we propose a Decoding Acceleration Framework for LLM-based Recommendation (dubbed DARE), with Customized Retrieval Pool to improve retrieval efficiency and Relaxed Verification to increase the acceptance rate of draft tokens, respectively. Extensive experiments demonstrate that DARE achieves a 3-5x speedup and is compatible with various frameworks and backbone LLMs. DARE has also been deployed to online advertising scenarios within a large-scale commercial environment, achieving a 3.45x speedup while maintaining the downstream performance.
Abstract:Click-through rate (CTR) prediction plays an important role in personalized recommendations. Recently, sample-level retrieval-based models (e.g., RIM) have achieved remarkable performance by retrieving and aggregating relevant samples. However, their inefficiency at the inference stage makes them impractical for industrial applications. To overcome this issue, this paper proposes a universal plug-and-play Retrieval-Oriented Knowledge (ROK) framework. Specifically, a knowledge base, consisting of a retrieval-oriented embedding layer and a knowledge encoder, is designed to preserve and imitate the retrieved & aggregated representations in a decomposition-reconstruction paradigm. Knowledge distillation and contrastive learning methods are utilized to optimize the knowledge base, and the learned retrieval-enhanced representations can be integrated with arbitrary CTR models in both instance-wise and feature-wise manners. Extensive experiments on three large-scale datasets show that ROK achieves competitive performance with the retrieval-based CTR models while reserving superior inference efficiency and model compatibility.
Abstract:Click-Through Rate (CTR) prediction is a fundamental technique in recommendation and advertising systems. Recent studies have shown that implementing multi-scenario recommendations contributes to strengthening information sharing and improving overall performance. However, existing multi-scenario models only consider coarse-grained explicit scenario modeling that depends on pre-defined scenario identification from manual prior rules, which is biased and sub-optimal. To address these limitations, we propose a Scenario-Aware Hierarchical Dynamic Network for Multi-Scenario Recommendations (HierRec), which perceives implicit patterns adaptively and conducts explicit and implicit scenario modeling jointly. In particular, HierRec designs a basic scenario-oriented module based on the dynamic weight to capture scenario-specific information. Then the hierarchical explicit and implicit scenario-aware modules are proposed to model hybrid-grained scenario information. The multi-head implicit modeling design contributes to perceiving distinctive patterns from different perspectives. Our experiments on two public datasets and real-world industrial applications on a mainstream online advertising platform demonstrate that our HierRec outperforms existing models significantly.
Abstract:With the development of the online education system, personalized education recommendation has played an essential role. In this paper, we focus on developing path recommendation systems that aim to generating and recommending an entire learning path to the given user in each session. Noticing that existing approaches fail to consider the correlations of concepts in the path, we propose a novel framework named Set-to-Sequence Ranking-based Concept-aware Learning Path Recommendation (SRC), which formulates the recommendation task under a set-to-sequence paradigm. Specifically, we first design a concept-aware encoder module which can capture the correlations among the input learning concepts. The outputs are then fed into a decoder module that sequentially generates a path through an attention mechanism that handles correlations between the learning and target concepts. Our recommendation policy is optimized by policy gradient. In addition, we also introduce an auxiliary module based on knowledge tracing to enhance the model's stability by evaluating students' learning effects on learning concepts. We conduct extensive experiments on two real-world public datasets and one industrial dataset, and the experimental results demonstrate the superiority and effectiveness of SRC. Code will be available at https://gitee.com/mindspore/models/tree/master/research/recommend/SRC.
Abstract:In reinforcement learning applications like robotics, agents usually need to deal with various input/output features when specified with different state/action spaces by their developers or physical restrictions. This indicates unnecessary re-training from scratch and considerable sample inefficiency, especially when agents follow similar solution steps to achieve tasks. In this paper, we aim to transfer similar high-level goal-transition knowledge to alleviate the challenge. Specifically, we propose PILoT, i.e., Planning Immediate Landmarks of Targets. PILoT utilizes the universal decoupled policy optimization to learn a goal-conditioned state planner; then, distills a goal-planner to plan immediate landmarks in a model-free style that can be shared among different agents. In our experiments, we show the power of PILoT on various transferring challenges, including few-shot transferring across action spaces and dynamics, from low-dimensional vector states to image inputs, from simple robot to complicated morphology; and we also illustrate a zero-shot transfer solution from a simple 2D navigation task to the harder Ant-Maze task.
Abstract:Exploration is crucial for training the optimal reinforcement learning (RL) policy, where the key is to discriminate whether a state visiting is novel. Most previous work focuses on designing heuristic rules or distance metrics to check whether a state is novel without considering such a discrimination process that can be learned. In this paper, we propose a novel method called generative adversarial exploration (GAEX) to encourage exploration in RL via introducing an intrinsic reward output from a generative adversarial network, where the generator provides fake samples of states that help discriminator identify those less frequently visited states. Thus the agent is encouraged to visit those states which the discriminator is less confident to judge as visited. GAEX is easy to implement and of high training efficiency. In our experiments, we apply GAEX into DQN and the DQN-GAEX algorithm achieves convincing performance on challenging exploration problems, including the game Venture, Montezuma's Revenge and Super Mario Bros, without further fine-tuning on complicate learning algorithms. To our knowledge, this is the first work to employ GAN in RL exploration problems.
Abstract:Goal-conditioned reinforcement learning (GCRL), related to a set of complex RL problems, trains an agent to achieve different goals under particular scenarios. Compared to the standard RL solutions that learn a policy solely depending on the states or observations, GCRL additionally requires the agent to make decisions according to different goals. In this survey, we provide a comprehensive overview of the challenges and algorithms for GCRL. Firstly, we answer what the basic problems are studied in this field. Then, we explain how goals are represented and present how existing solutions are designed from different points of view. Finally, we make the conclusion and discuss potential future prospects that recent researches focus on.
Abstract:In Goal-oriented Reinforcement learning, relabeling the raw goals in past experience to provide agents with hindsight ability is a major solution to the reward sparsity problem. In this paper, to enhance the diversity of relabeled goals, we develop FGI (Foresight Goal Inference), a new relabeling strategy that relabels the goals by looking into the future with a learned dynamics model. Besides, to improve sample efficiency, we propose to use the dynamics model to generate simulated trajectories for policy training. By integrating these two improvements, we introduce the MapGo framework (Model-Assisted Policy Optimization for Goal-oriented tasks). In our experiments, we first show the effectiveness of the FGI strategy compared with the hindsight one, and then show that the MapGo framework achieves higher sample efficiency when compared to model-free baselines on a set of complicated tasks.
Abstract:Hero drafting is essential in MOBA game playing as it builds the team of each side and directly affects the match outcome. State-of-the-art drafting methods fail to consider: 1) drafting efficiency when the hero pool is expanded; 2) the multi-round nature of a MOBA 5v5 match series, i.e., two teams play best-of-N and the same hero is only allowed to be drafted once throughout the series. In this paper, we formulate the drafting process as a multi-round combinatorial game and propose a novel drafting algorithm based on neural networks and Monte-Carlo tree search, named JueWuDraft. Specifically, we design a long-term value estimation mechanism to handle the best-of-N drafting case. Taking Honor of Kings, one of the most popular MOBA games at present, as a running case, we demonstrate the practicality and effectiveness of JueWuDraft when compared to state-of-the-art drafting methods.