Abstract:Feature selection is crucial in recommender systems for improving model efficiency and predictive performance. Traditional methods rely on agency models, such as decision trees or neural networks, to estimate feature importance. However, this approach is inherently limited, as the agency models may fail to learn effectively in all scenarios due to suboptimal training conditions (e.g., feature collinearity, high-dimensional sparsity, and data insufficiency). In this paper, we propose AltFS, an Agency-light Feature Selection method for deep recommender systems. AltFS integrates semantic reasoning from Large Language Models (LLMs) with task-specific learning from agency models. Initially, LLMs will generate a semantic ranking of feature importance, which is then refined by an agency model, combining world knowledge with task-specific insights. Extensive experiments on three public datasets from real-world recommender platforms demonstrate the effectiveness of AltFS. Our code is publicly available for reproducibility.
Abstract:The reranker and generator are two critical components in the Retrieval-Augmented Generation (i.e., RAG) pipeline, responsible for ranking relevant documents and generating responses. However, due to differences in pre-training data and objectives, there is an inevitable gap between the documents ranked as relevant by the reranker and those required by the generator to support answering the query. To address this gap, we propose RADIO, a novel and practical preference alignment framework with RAtionale DIstillatiOn. Specifically, We first propose a rationale extraction method that leverages the reasoning capabilities of Large Language Models (LLMs) to extract the rationales necessary for answering the query. Subsequently, a rationale-based alignment process is designed to rerank the documents based on the extracted rationales, and fine-tune the reranker to align the preferences. We conduct extensive experiments on two tasks across three datasets to demonstrate the effectiveness of our approach compared to baseline methods. Our code is released online to ease reproduction.
Abstract:Sequential Recommendation (SR) plays a critical role in predicting users' sequential preferences. Despite its growing prominence in various industries, the increasing scale of SR models incurs substantial computational costs and unpredictability, challenging developers to manage resources efficiently. Under this predicament, Scaling Laws have achieved significant success by examining the loss as models scale up. However, there remains a disparity between loss and model performance, which is of greater concern in practical applications. Moreover, as data continues to expand, it incorporates repetitive and inefficient data. In response, we introduce the Performance Law for SR models, which aims to theoretically investigate and model the relationship between model performance and data quality. Specifically, we first fit the HR and NDCG metrics to transformer-based SR models. Subsequently, we propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics. Our method enables accurate predictions across various dataset scales and model sizes, demonstrating a strong correlation in large SR models and offering insights into achieving optimal performance for any given model configuration.
Abstract:Recommendation systems are essential for filtering data and retrieving relevant information across various applications. Recent advancements have seen these systems incorporate increasingly large embedding tables, scaling up to tens of terabytes for industrial use. However, the expansion of network parameters in traditional recommendation models has plateaued at tens of millions, limiting further benefits from increased embedding parameters. Inspired by the success of large language models (LLMs), a new approach has emerged that scales network parameters using innovative structures, enabling continued performance improvements. A significant development in this area is Meta's generative recommendation model HSTU, which illustrates the scaling laws of recommendation systems by expanding parameters to thousands of billions. This new paradigm has achieved substantial performance gains in online experiments. In this paper, we aim to enhance the understanding of scaling laws by conducting comprehensive evaluations of large recommendation models. Firstly, we investigate the scaling laws across different backbone architectures of the large recommendation models. Secondly, we conduct comprehensive ablation studies to explore the origins of these scaling laws. We then further assess the performance of HSTU, as the representative of large recommendation models, on complex user behavior modeling tasks to evaluate its applicability. Notably, we also analyze its effectiveness in ranking tasks for the first time. Finally, we offer insights into future directions for large recommendation models. Supplementary materials for our research are available on GitHub at https://github.com/USTC-StarTeam/Large-Recommendation-Models.
Abstract:Many platforms, such as e-commerce websites, offer both search and recommendation services simultaneously to better meet users' diverse needs. Recommendation services suggest items based on user preferences, while search services allow users to search for items before providing recommendations. Since users and items are often shared between the search and recommendation domains, there is a valuable opportunity to enhance the recommendation domain by leveraging user preferences extracted from the search domain. Existing approaches either overlook the shift in user intention between these domains or fail to capture the significant impact of learning from users' search queries on understanding their interests. In this paper, we propose a framework that learns from user search query embeddings within the context of user preferences in the recommendation domain. Specifically, user search query sequences from the search domain are used to predict the items users will click at the next time point in the recommendation domain. Additionally, the relationship between queries and items is explored through contrastive learning. To address issues of data sparsity, the diffusion model is incorporated to infer positive items the user will select after searching with certain queries in a denoising manner, which is particularly effective in preventing false positives. Effectively extracting this information, the queries are integrated into click-through rate prediction in the recommendation domain. Experimental analysis demonstrates that our model outperforms state-of-the-art models in the recommendation domain.
Abstract:Click-Through Rate (CTR) prediction is a fundamental technique for online advertising recommendation and the complex online competitive auction process also brings many difficulties to CTR optimization. Recent studies have shown that introducing posterior auction information contributes to the performance of CTR prediction. However, existing work doesn't fully capitalize on the benefits of auction information and overlooks the data bias brought by the auction, leading to biased and suboptimal results. To address these limitations, we propose Auction Information Enhanced Framework (AIE) for CTR prediction in online advertising, which delves into the problem of insufficient utilization of auction signals and first reveals the auction bias. Specifically, AIE introduces two pluggable modules, namely Adaptive Market-price Auxiliary Module (AM2) and Bid Calibration Module (BCM), which work collaboratively to excavate the posterior auction signals better and enhance the performance of CTR prediction. Furthermore, the two proposed modules are lightweight, model-agnostic, and friendly to inference latency. Extensive experiments are conducted on a public dataset and an industrial dataset to demonstrate the effectiveness and compatibility of AIE. Besides, a one-month online A/B test in a large-scale advertising platform shows that AIE improves the base model by 5.76% and 2.44% in terms of eCPM and CTR, respectively.
Abstract:Large Language Models (LLMs) have exhibited significant promise in recommender systems by empowering user profiles with their extensive world knowledge and superior reasoning capabilities. However, LLMs face challenges like unstable instruction compliance, modality gaps, and high inference latency, leading to textual noise and limiting their effectiveness in recommender systems. To address these challenges, we propose UserIP-Tuning, which uses prompt-tuning to infer user profiles. It integrates the causal relationship between user profiles and behavior sequences into LLMs' prompts. And employs expectation maximization to infer the embedded latent profile, minimizing textual noise by fixing the prompt template. Furthermore, A profile quantization codebook bridges the modality gap by categorizing profile embeddings into collaborative IDs, which are pre-stored for online deployment. This improves time efficiency and reduces memory usage. Experiments on four public datasets show that UserIP-Tuning outperforms state-of-the-art recommendation algorithms. Additional tests and case studies confirm its effectiveness, robustness, and transferability.
Abstract:To alleviate the problem of information explosion, recommender systems are widely deployed to provide personalized information filtering services. Usually, embedding tables are employed in recommender systems to transform high-dimensional sparse one-hot vectors into dense real-valued embeddings. However, the embedding tables are huge and account for most of the parameters in industrial-scale recommender systems. In order to reduce memory costs and improve efficiency, various approaches are proposed to compress the embedding tables. In this survey, we provide a comprehensive review of embedding compression approaches in recommender systems. We first introduce deep learning recommendation models and the basic concept of embedding compression in recommender systems. Subsequently, we systematically organize existing approaches into three categories, namely low-precision, mixed-dimension, and weight-sharing, respectively. Lastly, we summarize the survey with some general suggestions and provide future prospects for this field.
Abstract:Recommender systems (RS) are vital for managing information overload and delivering personalized content, responding to users' diverse information needs. The emergence of large language models (LLMs) offers a new horizon for redefining recommender systems with vast general knowledge and reasoning capabilities. Standing across this LLM era, we aim to integrate recommender systems into a broader picture, and pave the way for more comprehensive solutions for future research. Therefore, we first offer a comprehensive overview of the technical progression of recommender systems, particularly focusing on language foundation models and their applications in recommendation. We identify two evolution paths of modern recommender systems -- via list-wise recommendation and conversational recommendation. These two paths finally converge at LLM agents with superior capabilities of long-term memory, reflection, and tool intelligence. Along these two paths, we point out that the information effectiveness of the recommendation is increased, while the user's acquisition cost is decreased. Technical features, research methodologies, and inherent challenges for each milestone along the path are carefully investigated -- from traditional list-wise recommendation to LLM-enhanced recommendation to recommendation with LLM agents. Finally, we highlight several unresolved challenges crucial for the development of future personalization technologies and interfaces and discuss the future prospects.
Abstract:As the demand for more personalized recommendation grows and a dramatic boom in commercial scenarios arises, the study on multi-scenario recommendation (MSR) has attracted much attention, which uses the data from all scenarios to simultaneously improve their recommendation performance. However, existing methods tend to integrate insufficient scenario knowledge and neglect learning personalized cross-scenario preferences, thus leading to suboptimal performance and inadequate interpretability. Meanwhile, though large language model (LLM) has shown great capability of reasoning and capturing semantic information, the high inference latency and high computation cost of tuning hinder its implementation in industrial recommender systems. To fill these gaps, we propose an effective efficient interpretable LLM-enhanced paradigm LLM4MSR in this work. Specifically, we first leverage LLM to uncover multi-level knowledge including scenario correlations and users' cross-scenario interests from the designed scenario- and user-level prompt without fine-tuning the LLM, then adopt hierarchical meta networks to generate multi-level meta layers to explicitly improves the scenario-aware and personalized recommendation capability. Our experiments on KuaiSAR-small, KuaiSAR, and Amazon datasets validate two significant advantages of LLM4MSR: (i) the effectiveness and compatibility with different multi-scenario backbone models (achieving 1.5%, 1%, and 40% AUC improvement on three datasets), (ii) high efficiency and deployability on industrial recommender systems, and (iii) improved interpretability. The implemented code and data is available to ease reproduction.