Abstract:As large language models (LLMs) advance, their ability to perform in-context learning and few-shot language generation has improved significantly. This has spurred using LLMs to produce high-quality synthetic data to enhance the performance of smaller models like online retrievers or weak LLMs. However, LLM-generated synthetic data often differs from the real data in key language attributes (e.g., styles, tones, content proportions, etc.). As a result, mixing these synthetic data directly with real data may distort the original data distribution, potentially hindering performance improvements. To solve this, we introduce SynAlign: a synthetic data generation and filtering framework based on key attribute distribution matching. Before generation, SynAlign employs an uncertainty tracker surrogated by the Gaussian Process model to iteratively select data clusters distinct from selected ones as demonstrations for new data synthesis, facilitating the efficient exploration diversity of the real data. Then, a latent attribute reasoning method is employed: the LLM summarizes linguistic attributes of demonstrations and then synthesizes new data based on them. This approach facilitates synthesizing diverse data with linguistic attributes that appear in real data.After generation, the Maximum Mean Discrepancy is used as the objective function to learn the sampling weight of each synthetic data, ensuring distribution matching with the real data. Our experiments on multiple text prediction tasks show significant performance improvements. We also conducted an online A/B test on an online retriever to demonstrate SynAlign's effectiveness.
Abstract:Tabular data synthesis is crucial in machine learning, yet existing general methods-primarily based on statistical or deep learning models-are highly data-dependent and often fall short in recommender systems. This limitation arises from their difficulty in capturing complex distributions and understanding feature relationships from sparse and limited data, along with their inability to grasp semantic feature relations. Recently, Large Language Models (LLMs) have shown potential in generating synthetic data samples through few-shot learning and semantic understanding. However, they often suffer from inconsistent distribution and lack of diversity due to their inherent distribution disparity with the target dataset. To address these challenges and enhance tabular data synthesis for recommendation tasks, we propose a novel two-stage framework named SampleLLM to improve the quality of LLM-based tabular data synthesis for recommendations by ensuring better distribution alignment. In the first stage, SampleLLM employs LLMs with Chain-of-Thought prompts and diverse exemplars to generate data that closely aligns with the target dataset distribution, even when input samples are limited. The second stage uses an advanced feature attribution-based importance sampling method to refine feature relationships within the synthesized data, reducing any distribution biases introduced by the LLM. Experimental results on three recommendation datasets, two general datasets, and online deployment illustrate that SampleLLM significantly surpasses existing methods for recommendation tasks and holds promise for a broader range of tabular data scenarios.
Abstract:The performance of Dense retrieval (DR) is significantly influenced by the quality of negative sampling. Traditional DR methods primarily depend on naive negative sampling techniques or on mining hard negatives through external retriever and meticulously crafted strategies. However, naive negative sampling often fails to adequately capture the accurate boundaries between positive and negative samples, whereas existing hard negative sampling methods are prone to false negatives, resulting in performance degradation and training instability. Recent advancements in large language models (LLMs) offer an innovative solution to these challenges by generating contextually rich and diverse negative samples. In this work, we present a framework that harnesses LLMs to synthesize high-quality hard negative samples. We first devise a \textit{multi-attribute self-reflection prompting strategy} to direct LLMs in hard negative sample generation. Then, we implement a \textit{hybrid sampling strategy} that integrates these synthetic negatives with traditionally retrieved negatives, thereby stabilizing the training process and improving retrieval performance. Extensive experiments on five benchmark datasets demonstrate the efficacy of our approach, and code is also publicly available.
Abstract:Evaluating the quality of recommender systems is critical for algorithm design and optimization. Most evaluation methods are computed based on offline metrics for quick algorithm evolution, since online experiments are usually risky and time-consuming. However, offline evaluation usually cannot fully reflect users' preference for the outcome of different recommendation algorithms, and the results may not be consistent with online A/B test. Moreover, many offline metrics such as AUC do not offer sufficient information for comparing the subtle differences between two competitive recommender systems in different aspects, which may lead to substantial performance differences in long-term online serving. Fortunately, due to the strong commonsense knowledge and role-play capability of large language models (LLMs), it is possible to obtain simulated user feedback on offline recommendation results. Motivated by the idea of LLM Chatbot Arena, in this paper we present the idea of RecSys Arena, where the recommendation results given by two different recommender systems in each session are evaluated by an LLM judger to obtain fine-grained evaluation feedback. More specifically, for each sample we use LLM to generate a user profile description based on user behavior history or off-the-shelf profile features, which is used to guide LLM to play the role of this user and evaluate the relative preference for two recommendation results generated by different models. Through extensive experiments on two recommendation datasets in different scenarios, we demonstrate that many different LLMs not only provide general evaluation results that are highly consistent with canonical offline metrics, but also provide rich insight in many subjective aspects. Moreover, it can better distinguish different algorithms with comparable performance in terms of AUC and nDCG.
Abstract:Feature selection is crucial in recommender systems for improving model efficiency and predictive performance. Traditional methods rely on agency models, such as decision trees or neural networks, to estimate feature importance. However, this approach is inherently limited, as the agency models may fail to learn effectively in all scenarios due to suboptimal training conditions (e.g., feature collinearity, high-dimensional sparsity, and data insufficiency). In this paper, we propose AltFS, an Agency-light Feature Selection method for deep recommender systems. AltFS integrates semantic reasoning from Large Language Models (LLMs) with task-specific learning from agency models. Initially, LLMs will generate a semantic ranking of feature importance, which is then refined by an agency model, combining world knowledge with task-specific insights. Extensive experiments on three public datasets from real-world recommender platforms demonstrate the effectiveness of AltFS. Our code is publicly available for reproducibility.
Abstract:The reranker and generator are two critical components in the Retrieval-Augmented Generation (i.e., RAG) pipeline, responsible for ranking relevant documents and generating responses. However, due to differences in pre-training data and objectives, there is an inevitable gap between the documents ranked as relevant by the reranker and those required by the generator to support answering the query. To address this gap, we propose RADIO, a novel and practical preference alignment framework with RAtionale DIstillatiOn. Specifically, We first propose a rationale extraction method that leverages the reasoning capabilities of Large Language Models (LLMs) to extract the rationales necessary for answering the query. Subsequently, a rationale-based alignment process is designed to rerank the documents based on the extracted rationales, and fine-tune the reranker to align the preferences. We conduct extensive experiments on two tasks across three datasets to demonstrate the effectiveness of our approach compared to baseline methods. Our code is released online to ease reproduction.
Abstract:Large Language Models (LLMs) have exhibited significant promise in recommender systems by empowering user profiles with their extensive world knowledge and superior reasoning capabilities. However, LLMs face challenges like unstable instruction compliance, modality gaps, and high inference latency, leading to textual noise and limiting their effectiveness in recommender systems. To address these challenges, we propose UserIP-Tuning, which uses prompt-tuning to infer user profiles. It integrates the causal relationship between user profiles and behavior sequences into LLMs' prompts. And employs expectation maximization to infer the embedded latent profile, minimizing textual noise by fixing the prompt template. Furthermore, A profile quantization codebook bridges the modality gap by categorizing profile embeddings into collaborative IDs, which are pre-stored for online deployment. This improves time efficiency and reduces memory usage. Experiments on four public datasets show that UserIP-Tuning outperforms state-of-the-art recommendation algorithms. Additional tests and case studies confirm its effectiveness, robustness, and transferability.
Abstract:With the increase in the business scale and number of domains in online advertising, multi-domain ad recommendation has become a mainstream solution in the industry. The core of multi-domain recommendation is effectively modeling the commonalities and distinctions among domains. Existing works are dedicated to designing model architectures for implicit multi-domain modeling while overlooking an in-depth investigation from a more fundamental perspective of feature distributions. This paper focuses on features with significant differences across various domains in both distributions and effects on model predictions. We refer to these features as domain-sensitive features, which serve as carriers of domain distinctions and are crucial for multi-domain modeling. Experiments demonstrate that existing multi-domain modeling methods may neglect domain-sensitive features, indicating insufficient learning of domain distinctions. To avoid this neglect, we propose a domain-sensitive feature attribution method to identify features that best reflect domain distinctions from the feature set. Further, we design a memory architecture that extracts domain-specific information from domain-sensitive features for the model to retrieve and integrate, thereby enhancing the awareness of domain distinctions. Extensive offline and online experiments demonstrate the superiority of our method in capturing domain distinctions and improving multi-domain recommendation performance.
Abstract:Personalized recommendation serves as a ubiquitous channel for users to discover information or items tailored to their interests. However, traditional recommendation models primarily rely on unique IDs and categorical features for user-item matching, potentially overlooking the nuanced essence of raw item contents across multiple modalities such as text, image, audio, and video. This underutilization of multimodal data poses a limitation to recommender systems, especially in multimedia services like news, music, and short-video platforms. The recent advancements in pretrained multimodal models offer new opportunities and challenges in developing content-aware recommender systems. This survey seeks to provide a comprehensive exploration of the latest advancements and future trajectories in multimodal pretraining, adaptation, and generation techniques, as well as their applications to recommender systems. Furthermore, we discuss open challenges and opportunities for future research in this domain. We hope that this survey, along with our tutorial materials, will inspire further research efforts to advance this evolving landscape.
Abstract:Deep Recommender Systems (DRS) are increasingly dependent on a large number of feature fields for more precise recommendations. Effective feature selection methods are consequently becoming critical for further enhancing the accuracy and optimizing storage efficiencies to align with the deployment demands. This research area, particularly in the context of DRS, is nascent and faces three core challenges. Firstly, variant experimental setups across research papers often yield unfair comparisons, obscuring practical insights. Secondly, the existing literature's lack of detailed analysis on selection attributes, based on large-scale datasets and a thorough comparison among selection techniques and DRS backbones, restricts the generalizability of findings and impedes deployment on DRS. Lastly, research often focuses on comparing the peak performance achievable by feature selection methods, an approach that is typically computationally infeasible for identifying the optimal hyperparameters and overlooks evaluating the robustness and stability of these methods. To bridge these gaps, this paper presents ERASE, a comprehensive bEnchmaRk for feAture SElection for DRS. ERASE comprises a thorough evaluation of eleven feature selection methods, covering both traditional and deep learning approaches, across four public datasets, private industrial datasets, and a real-world commercial platform, achieving significant enhancement. Our code is available online for ease of reproduction.