Abstract:Ensuring the safety of autonomous vehicles (AVs) in long-tail scenarios remains a critical challenge, particularly under high uncertainty and complex multi-agent interactions. To address this, we propose RiskNet, an interaction-aware risk forecasting framework, which integrates deterministic risk modeling with probabilistic behavior prediction for comprehensive risk assessment. At its core, RiskNet employs a field-theoretic model that captures interactions among ego vehicle, surrounding agents, and infrastructure via interaction fields and force. This model supports multidimensional risk evaluation across diverse scenarios (highways, intersections, and roundabouts), and shows robustness under high-risk and long-tail settings. To capture the behavioral uncertainty, we incorporate a graph neural network (GNN)-based trajectory prediction module, which learns multi-modal future motion distributions. Coupled with the deterministic risk field, it enables dynamic, probabilistic risk inference across time, enabling proactive safety assessment under uncertainty. Evaluations on the highD, inD, and rounD datasets, spanning lane changes, turns, and complex merges, demonstrate that our method significantly outperforms traditional approaches (e.g., TTC, THW, RSS, NC Field) in terms of accuracy, responsiveness, and directional sensitivity, while maintaining strong generalization across scenarios. This framework supports real-time, scenario-adaptive risk forecasting and demonstrates strong generalization across uncertain driving environments. It offers a unified foundation for safety-critical decision-making in long-tail scenarios.
Abstract:Personalization has become an essential capability in modern AI systems, enabling customized interactions that align with individual user preferences, contexts, and goals. Recent research has increasingly concentrated on Retrieval-Augmented Generation (RAG) frameworks and their evolution into more advanced agent-based architectures within personalized settings to enhance user satisfaction. Building on this foundation, this survey systematically examines personalization across the three core stages of RAG: pre-retrieval, retrieval, and generation. Beyond RAG, we further extend its capabilities into the realm of Personalized LLM-based Agents, which enhance traditional RAG systems with agentic functionalities, including user understanding, personalized planning and execution, and dynamic generation. For both personalization in RAG and agent-based personalization, we provide formal definitions, conduct a comprehensive review of recent literature, and summarize key datasets and evaluation metrics. Additionally, we discuss fundamental challenges, limitations, and promising research directions in this evolving field. Relevant papers and resources are continuously updated at https://github.com/Applied-Machine-Learning-Lab/Awesome-Personalized-RAG-Agent.
Abstract:LiDAR-based Vehicle-to-Everything (V2X) cooperative perception has demonstrated its impact on the safety and effectiveness of autonomous driving. Since current cooperative perception algorithms are trained and tested on the same dataset, the generalization ability of cooperative perception systems remains underexplored. This paper is the first work to study the Domain Generalization problem of LiDAR-based V2X cooperative perception (V2X-DG) for 3D detection based on four widely-used open source datasets: OPV2V, V2XSet, V2V4Real and DAIR-V2X. Our research seeks to sustain high performance not only within the source domain but also across other unseen domains, achieved solely through training on source domain. To this end, we propose Cooperative Mixup Augmentation based Generalization (CMAG) to improve the model generalization capability by simulating the unseen cooperation, which is designed compactly for the domain gaps in cooperative perception. Furthermore, we propose a constraint for the regularization of the robust generalized feature representation learning: Cooperation Feature Consistency (CFC), which aligns the intermediately fused features of the generalized cooperation by CMAG and the early fused features of the original cooperation in source domain. Extensive experiments demonstrate that our approach achieves significant performance gains when generalizing to other unseen datasets while it also maintains strong performance on the source dataset.
Abstract:Ensuring safe interactions between autonomous vehicles (AVs) and human drivers in mixed traffic systems remains a major challenge, particularly in complex, high-risk scenarios. This paper presents a cognition-decision framework that integrates individual variability and commonalities in driver behavior to quantify risk cognition and model dynamic decision-making. First, a risk sensitivity model based on a multivariate Gaussian distribution is developed to characterize individual differences in risk cognition. Then, a cognitive decision-making model based on the drift diffusion model (DDM) is introduced to capture common decision-making mechanisms in high-risk environments. The DDM dynamically adjusts decision thresholds by integrating initial bias, drift rate, and boundary parameters, adapting to variations in speed, relative distance, and risk sensitivity to reflect diverse driving styles and risk preferences. By simulating high-risk scenarios with lateral, longitudinal, and multidimensional risk sources in a driving simulator, the proposed model accurately predicts cognitive responses and decision behaviors during emergency maneuvers. Specifically, by incorporating driver-specific risk sensitivity, the model enables dynamic adjustments of key DDM parameters, allowing for personalized decision-making representations in diverse scenarios. Comparative analysis with IDM, Gipps, and MOBIL demonstrates that DDM more precisely captures human cognitive processes and adaptive decision-making in high-risk scenarios. These findings provide a theoretical basis for modeling human driving behavior and offer critical insights for enhancing AV-human interaction in real-world traffic environments.
Abstract:In today's digital landscape, Deep Recommender Systems (DRS) play a crucial role in navigating and customizing online content for individual preferences. However, conventional methods, which mainly depend on single recommendation task, scenario, data modality and user behavior, are increasingly seen as insufficient due to their inability to accurately reflect users' complex and changing preferences. This gap underscores the need for joint modeling approaches, which are central to overcoming these limitations by integrating diverse tasks, scenarios, modalities, and behaviors in the recommendation process, thus promising significant enhancements in recommendation precision, efficiency, and customization. In this paper, we comprehensively survey the joint modeling methods in recommendations. We begin by defining the scope of joint modeling through four distinct dimensions: multi-task, multi-scenario, multi-modal, and multi-behavior modeling. Subsequently, we examine these methods in depth, identifying and summarizing their underlying paradigms based on the latest advancements and potential research trajectories. Ultimately, we highlight several promising avenues for future exploration in joint modeling for recommendations and provide a concise conclusion to our findings.
Abstract:Model editing is a powerful technique for updating the knowledge of Large Language Models (LLMs). Locate-then-edit methods are a popular class of approaches that first identify the critical layers storing knowledge, then compute the residual of the last critical layer based on the edited knowledge, and finally perform multi-layer updates using a least-squares solution by evenly distributing the residual from the first critical layer to the last. Although these methods achieve promising results, they have been shown to degrade the original knowledge of LLMs. We argue that residual distribution leads to this issue. To explore this, we conduct a comprehensive analysis of residual distribution in locate-then-edit methods from both empirical and theoretical perspectives, revealing that residual distribution introduces editing errors, leading to inaccurate edits. To address this issue, we propose the Boundary Layer UpdatE (BLUE) strategy to enhance locate-then-edit methods. Sequential batch editing experiments on three LLMs and two datasets demonstrate that BLUE not only delivers an average performance improvement of 35.59\%, significantly advancing the state of the art in model editing, but also enhances the preservation of LLMs' general capabilities. Our code is available at https://github.com/xpq-tech/BLUE.
Abstract:Tabular data synthesis is crucial in machine learning, yet existing general methods-primarily based on statistical or deep learning models-are highly data-dependent and often fall short in recommender systems. This limitation arises from their difficulty in capturing complex distributions and understanding feature relationships from sparse and limited data, along with their inability to grasp semantic feature relations. Recently, Large Language Models (LLMs) have shown potential in generating synthetic data samples through few-shot learning and semantic understanding. However, they often suffer from inconsistent distribution and lack of diversity due to their inherent distribution disparity with the target dataset. To address these challenges and enhance tabular data synthesis for recommendation tasks, we propose a novel two-stage framework named SampleLLM to improve the quality of LLM-based tabular data synthesis for recommendations by ensuring better distribution alignment. In the first stage, SampleLLM employs LLMs with Chain-of-Thought prompts and diverse exemplars to generate data that closely aligns with the target dataset distribution, even when input samples are limited. The second stage uses an advanced feature attribution-based importance sampling method to refine feature relationships within the synthesized data, reducing any distribution biases introduced by the LLM. Experimental results on three recommendation datasets, two general datasets, and online deployment illustrate that SampleLLM significantly surpasses existing methods for recommendation tasks and holds promise for a broader range of tabular data scenarios.
Abstract:The Markov property serves as a foundational assumption in most existing work on vehicle driving behavior, positing that future states depend solely on the current state, not the series of preceding states. This study validates the Markov properties of vehicle trajectories for both Autonomous Vehicles (AVs) and Human-driven Vehicles (HVs). A statistical method used to test whether time series data exhibits Markov properties is applied to examine whether the trajectory data possesses Markov characteristics. t test and F test are additionally introduced to characterize the differences in Markov properties between AVs and HVs. Based on two public trajectory datasets, we investigate the presence and order of the Markov property of different types of vehicles through rigorous statistical tests. Our findings reveal that AV trajectories generally exhibit stronger Markov properties compared to HV trajectories, with a higher percentage conforming to the Markov property and lower Markov orders. In contrast, HV trajectories display greater variability and heterogeneity in decision-making processes, reflecting the complex perception and information processing involved in human driving. These results have significant implications for the development of driving behavior models, AV controllers, and traffic simulation systems. Our study also demonstrates the feasibility of using statistical methods to test the presence of Markov properties in driving trajectory data.
Abstract:Large language models (LLMs) have spurred development in multiple industries. However, the growing number of their parameters brings substantial storage and computing burdens, making it essential to explore model compression techniques for parameter reduction and easier deployment. We propose SWSC, an LLM compression method based on the concept of Shared Weight for Similar Channel. It uses the K-Means clustering algorithm to cluster model weights channel-by-channel, generating clusters with highly similar vectors within each. A representative vector from each cluster is selected to approximately replace all vectors in the cluster, significantly reducing the number of model weight parameters. However, approximate restoration will inevitably cause damage to the performance of the model. To tackle this issue, we perform singular value decomposition on the weight error values before and after compression and retain the larger singular values and their corresponding singular vectors to compensate for the accuracy. The experimental results show that our method can effectively ensure the performance of the compressed LLM even under low-precision conditions.
Abstract:Prompt engineering can significantly improve the performance of large language models (LLMs), with automated prompt optimization (APO) gaining significant attention due to the time-consuming and laborious nature of manual prompt design. However, much of the existing work in APO overlooks task-specific characteristics, resulting in prompts that lack domain specificity and are not well-suited for task-specific optimization. In this paper, we introduce TAPO, a multitask-aware prompt optimization framework composed of three key modules. First, a task-aware metric selection module is proposed to enhance task-specific prompt generation capabilities. Second, we present a multi-metrics evaluation module to jointly evaluate prompts from multiple perspectives. Third, an evolution-based optimization framework is introduced for automatic prompt refinement, which improves adaptability across various tasks. Extensive experiments on six datasets demonstrate the effectiveness of our approach, and our code is publicly available.