Abstract:Vehicle trajectory prediction is crucial for advancing autonomous driving and advanced driver assistance systems (ADAS). Although deep learning-based approaches - especially those utilizing transformer-based and generative models - have markedly improved prediction accuracy by capturing complex, non-linear patterns in vehicle dynamics and traffic interactions, they frequently overlook detailed car-following behaviors and the inter-vehicle interactions critical for real-world driving applications, particularly in fully autonomous or mixed traffic scenarios. To address the issue, this study introduces a scaled noise conditional diffusion model for car-following trajectory prediction, which integrates detailed inter-vehicular interactions and car-following dynamics into a generative framework, improving both the accuracy and plausibility of predicted trajectories. The model utilizes a novel pipeline to capture historical vehicle dynamics by scaling noise with encoded historical features within the diffusion process. Particularly, it employs a cross-attention-based transformer architecture to model intricate inter-vehicle dependencies, effectively guiding the denoising process and enhancing prediction accuracy. Experimental results on diverse real-world driving scenarios demonstrate the state-of-the-art performance and robustness of the proposed method.
Abstract:Semantic scene completion (SSC) is essential for achieving comprehensive perception in autonomous driving systems. However, existing SSC methods often overlook the high deployment costs in real-world applications. Traditional architectures, such as 3D Convolutional Neural Networks (3D CNNs) and self-attention mechanisms, face challenges in efficiently capturing long-range dependencies within 3D voxel grids, limiting their effectiveness. To address these issues, we introduce MetaSSC, a novel meta-learning-based framework for SSC that leverages deformable convolution, large-kernel attention, and the Mamba (D-LKA-M) model. Our approach begins with a voxel-based semantic segmentation (SS) pretraining task, aimed at exploring the semantics and geometry of incomplete regions while acquiring transferable meta-knowledge. Using simulated cooperative perception datasets, we supervise the perception training of a single vehicle using aggregated sensor data from multiple nearby connected autonomous vehicles (CAVs), generating richer and more comprehensive labels. This meta-knowledge is then adapted to the target domain through a dual-phase training strategy that does not add extra model parameters, enabling efficient deployment. To further enhance the model's capability in capturing long-sequence relationships within 3D voxel grids, we integrate Mamba blocks with deformable convolution and large-kernel attention into the backbone network. Extensive experiments demonstrate that MetaSSC achieves state-of-the-art performance, significantly outperforming competing models while also reducing deployment costs.
Abstract:In the field of autonomous driving, developing safe and trustworthy autonomous driving policies remains a significant challenge. Recently, Reinforcement Learning with Human Feedback (RLHF) has attracted substantial attention due to its potential to enhance training safety and sampling efficiency. Nevertheless, existing RLHF-enabled methods often falter when faced with imperfect human demonstrations, potentially leading to training oscillations or even worse performance than rule-based approaches. Inspired by the human learning process, we propose Physics-enhanced Reinforcement Learning with Human Feedback (PE-RLHF). This novel framework synergistically integrates human feedback (e.g., human intervention and demonstration) and physics knowledge (e.g., traffic flow model) into the training loop of reinforcement learning. The key advantage of PE-RLHF is its guarantee that the learned policy will perform at least as well as the given physics-based policy, even when human feedback quality deteriorates, thus ensuring trustworthy safety improvements. PE-RLHF introduces a Physics-enhanced Human-AI (PE-HAI) collaborative paradigm for dynamic action selection between human and physics-based actions, employs a reward-free approach with a proxy value function to capture human preferences, and incorporates a minimal intervention mechanism to reduce the cognitive load on human mentors. Extensive experiments across diverse driving scenarios demonstrate that PE-RLHF significantly outperforms traditional methods, achieving state-of-the-art (SOTA) performance in safety, efficiency, and generalizability, even with varying quality of human feedback. The philosophy behind PE-RLHF not only advances autonomous driving technology but can also offer valuable insights for other safety-critical domains. Demo video and code are available at: \https://zilin-huang.github.io/PE-RLHF-website/
Abstract:Model-based reinforcement learning (RL) is anticipated to exhibit higher sample efficiency compared to model-free RL by utilizing a virtual environment model. However, it is challenging to obtain sufficiently accurate representations of the environmental dynamics due to uncertainties in complex systems and environments. An inaccurate environment model may degrade the sample efficiency and performance of model-based RL. Furthermore, while model-based RL can improve sample efficiency, it often still requires substantial training time to learn from scratch, potentially limiting its advantages over model-free approaches. To address these challenges, this paper introduces a knowledge-informed model-based residual reinforcement learning framework aimed at enhancing learning efficiency by infusing established expert knowledge into the learning process and avoiding the issue of beginning from zero. Our approach integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics, thus ensuring adaptability to complex scenarios. We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch. The proposed approach is applied to CAV trajectory control tasks for the dissipation of stop-and-go waves in mixed traffic flow. Experimental results demonstrate that our proposed approach enables the CAV agent to achieve superior performance in trajectory control compared to the baseline agents in terms of sample efficiency, traffic flow smoothness and traffic mobility. The source code and supplementary materials are available at https://github.com/zihaosheng/traffic-expertise-RL/.
Abstract:Vehicle trajectory prediction is crucial for advancing autonomous driving and advanced driver assistance systems (ADAS), enhancing road safety and traffic efficiency. While traditional methods have laid foundational work, modern deep learning techniques, particularly transformer-based models and generative approaches, have significantly improved prediction accuracy by capturing complex and non-linear patterns in vehicle motion and traffic interactions. However, these models often overlook the detailed car-following behaviors and inter-vehicle interactions essential for real-world driving scenarios. This study introduces a Cross-Attention Transformer Enhanced Conditional Diffusion Model (Crossfusor) specifically designed for car-following trajectory prediction. Crossfusor integrates detailed inter-vehicular interactions and car-following dynamics into a robust diffusion framework, improving both the accuracy and realism of predicted trajectories. The model leverages a novel temporal feature encoding framework combining GRU, location-based attention mechanisms, and Fourier embedding to capture historical vehicle dynamics. It employs noise scaled by these encoded historical features in the forward diffusion process, and uses a cross-attention transformer to model intricate inter-vehicle dependencies in the reverse denoising process. Experimental results on the NGSIM dataset demonstrate that Crossfusor outperforms state-of-the-art models, particularly in long-term predictions, showcasing its potential for enhancing the predictive capabilities of autonomous driving systems.
Abstract:Despite significant progress in autonomous vehicles (AVs), the development of driving policies that ensure both the safety of AVs and traffic flow efficiency has not yet been fully explored. In this paper, we propose an enhanced human-in-the-loop reinforcement learning method, termed the Human as AI mentor-based deep reinforcement learning (HAIM-DRL) framework, which facilitates safe and efficient autonomous driving in mixed traffic platoon. Drawing inspiration from the human learning process, we first introduce an innovative learning paradigm that effectively injects human intelligence into AI, termed Human as AI mentor (HAIM). In this paradigm, the human expert serves as a mentor to the AI agent. While allowing the agent to sufficiently explore uncertain environments, the human expert can take control in dangerous situations and demonstrate correct actions to avoid potential accidents. On the other hand, the agent could be guided to minimize traffic flow disturbance, thereby optimizing traffic flow efficiency. In detail, HAIM-DRL leverages data collected from free exploration and partial human demonstrations as its two training sources. Remarkably, we circumvent the intricate process of manually designing reward functions; instead, we directly derive proxy state-action values from partial human demonstrations to guide the agents' policy learning. Additionally, we employ a minimal intervention technique to reduce the human mentor's cognitive load. Comparative results show that HAIM-DRL outperforms traditional methods in driving safety, sampling efficiency, mitigation of traffic flow disturbance, and generalizability to unseen traffic scenarios. The code and demo videos for this paper can be accessed at: https://zilin-huang.github.io/HAIM-DRL-website/
Abstract:In vehicle trajectory prediction, physics models and data-driven models are two predominant methodologies. However, each approach presents its own set of challenges: physics models fall short in predictability, while data-driven models lack interpretability. Addressing these identified shortcomings, this paper proposes a novel framework, the Physics-Enhanced Residual Learning (PERL) model. PERL integrates the strengths of physics-based and data-driven methods for traffic state prediction. PERL contains a physics model and a residual learning model. Its prediction is the sum of the physics model result and a predicted residual as a correction to it. It preserves the interpretability inherent to physics-based models and has reduced data requirements compared to data-driven methods. Experiments were conducted using a real-world vehicle trajectory dataset. We proposed a PERL model, with the Intelligent Driver Model (IDM) as its physics car-following model and Long Short-Term Memory (LSTM) as its residual learning model. We compare this PERL model with the physics car-following model, data-driven model, and other physics-informed neural network (PINN) models. The result reveals that PERL achieves better prediction with a small dataset, compared to the physics model, data-driven model, and PINN model. Second, the PERL model showed faster convergence during training, offering comparable performance with fewer training samples than the data-driven model and PINN model. Sensitivity analysis also proves comparable performance of PERL using another residual learning model and a physics car-following model.
Abstract:Intelligent vehicle anticipation of the movement intentions of other drivers can reduce collisions. Typically, when a human driver of another vehicle (referred to as the target vehicle) engages in specific behaviors such as checking the rearview mirror prior to lane change, a valuable clue is therein provided on the intentions of the target vehicle's driver. Furthermore, the target driver's intentions can be influenced and shaped by their driving environment. For example, if the target vehicle is too close to a leading vehicle, it may renege the lane change decision. On the other hand, a following vehicle in the target lane is too close to the target vehicle could lead to its reversal of the decision to change lanes. Knowledge of such intentions of all vehicles in a traffic stream can help enhance traffic safety. Unfortunately, such information is often captured in the form of images/videos. Utilization of personally identifiable data to train a general model could violate user privacy. Federated Learning (FL) is a promising tool to resolve this conundrum. FL efficiently trains models without exposing the underlying data. This paper introduces a Personalized Federated Learning (PFL) model embedded a long short-term transformer (LSTR) framework. The framework predicts drivers' intentions by leveraging in-vehicle videos (of driver movement, gestures, and expressions) and out-of-vehicle videos (of the vehicle's surroundings - frontal/rear areas). The proposed PFL-LSTR framework is trained and tested through real-world driving data collected from human drivers at Interstate 65 in Indiana. The results suggest that the PFL-LSTR exhibits high adaptability and high precision, and that out-of-vehicle information (particularly, the driver's rear-mirror viewing actions) is important because it helps reduce false positives and thereby enhances the precision of driver intention inference.
Abstract:The exponential growth of electric vehicles (EVs) presents novel challenges in preserving battery health and in addressing the persistent problem of vehicle range anxiety. To address these concerns, wireless charging, particularly, Mobile Energy Disseminators (MEDs) have emerged as a promising solution. The MED is mounted behind a large vehicle and charges all participating EVs within a radius upstream of it. Unfortuantely, during such V2V charging, the MED and EVs inadvertently form platoons, thereby occupying multiple lanes and impairing overall corridor travel efficiency. In addition, constrained budgets for MED deployment necessitate the development of an effective dispatching strategy to determine optimal timing and locations for introducing the MEDs into traffic. This paper proposes a deep reinforcement learning (DRL) based methodology to develop a vehicle dispatching framework. In the first component of the framework, we develop a realistic reinforcement learning environment termed "ChargingEnv" which incorporates a reliable charging simulation system that accounts for common practical issues in wireless charging deployment, specifically, the charging panel misalignment. The second component, the Proximal-Policy Optimization (PPO) agent, is trained to control MED dispatching through continuous interactions with ChargingEnv. Numerical experiments were carried out to demonstrate the demonstrate the efficacy of the proposed MED deployment decision processor. The experiment results suggest that the proposed model can significantly enhance EV travel range while efficiently deploying a optimal number of MEDs. The proposed model is found to be not only practical in its applicability but also has promises of real-world effectiveness. The proposed model can help travelers to maximize EV range and help road agencies or private-sector vendors to manage the deployment of MEDs efficiently.
Abstract:With ongoing development of autonomous driving systems and increasing desire for deployment, researchers continue to seek reliable approaches for ADS systems. The virtual simulation test (VST) has become a prominent approach for testing autonomous driving systems (ADS) and advanced driver assistance systems (ADAS) due to its advantages of fast execution, low cost, and high repeatability. However, the success of these simulation-based experiments heavily relies on the realism of the testing scenarios. It is needed to create more flexible and high-fidelity testing scenarios in VST in order to increase the safety and reliabilityof ADS and ADAS.To address this challenge, this paper introduces the "Transfusor" model, which leverages the transformer and diffusor models (two cutting-edge deep learning generative technologies). The primary objective of the Transfusor model is to generate highly realistic and controllable human-like lane-changing trajectories in highway scenarios. Extensive experiments were carried out, and the results demonstrate that the proposed model effectively learns the spatiotemporal characteristics of humans' lane-changing behaviors and successfully generates trajectories that closely mimic real-world human driving. As such, the proposed model can play a critical role of creating more flexible and high-fidelity testing scenarios in the VST, ultimately leading to safer and more reliable ADS and ADAS.