Abstract:Motivated by the emergent reasoning capabilities of Vision Language Models (VLMs) and its potential to improve the comprehensibility of autonomous driving systems, this paper introduces a closed-loop autonomous driving controller called VLM-MPC, which combines a VLM for high-level decision-making and a Model Predictive Controller (MPC) for low-level vehicle control. The proposed VLM-MPC system is structurally divided into two asynchronous components: an upper-level VLM and a lower-level MPC. The upper layer VLM generates driving parameters for lower-level control based on front camera images, ego vehicle state, traffic environment conditions, and reference memory. The lower-level MPC controls the vehicle in real-time using these parameters, considering engine lag and providing state feedback to the entire system. Experiments based on the nuScenes dataset validated the effectiveness of the proposed VLM-MPC system across various scenarios (e.g., night, rain, intersections). Results showed that the VLM-MPC system consistently outperformed baseline models in terms of safety and driving comfort. By comparing behaviors under different weather conditions and scenarios, we demonstrated the VLM's ability to understand the environment and make reasonable inferences.
Abstract:Vehicle trajectory prediction is crucial for advancing autonomous driving and advanced driver assistance systems (ADAS), enhancing road safety and traffic efficiency. While traditional methods have laid foundational work, modern deep learning techniques, particularly transformer-based models and generative approaches, have significantly improved prediction accuracy by capturing complex and non-linear patterns in vehicle motion and traffic interactions. However, these models often overlook the detailed car-following behaviors and inter-vehicle interactions essential for real-world driving scenarios. This study introduces a Cross-Attention Transformer Enhanced Conditional Diffusion Model (Crossfusor) specifically designed for car-following trajectory prediction. Crossfusor integrates detailed inter-vehicular interactions and car-following dynamics into a robust diffusion framework, improving both the accuracy and realism of predicted trajectories. The model leverages a novel temporal feature encoding framework combining GRU, location-based attention mechanisms, and Fourier embedding to capture historical vehicle dynamics. It employs noise scaled by these encoded historical features in the forward diffusion process, and uses a cross-attention transformer to model intricate inter-vehicle dependencies in the reverse denoising process. Experimental results on the NGSIM dataset demonstrate that Crossfusor outperforms state-of-the-art models, particularly in long-term predictions, showcasing its potential for enhancing the predictive capabilities of autonomous driving systems.
Abstract:In vehicle trajectory prediction, physics models and data-driven models are two predominant methodologies. However, each approach presents its own set of challenges: physics models fall short in predictability, while data-driven models lack interpretability. Addressing these identified shortcomings, this paper proposes a novel framework, the Physics-Enhanced Residual Learning (PERL) model. PERL integrates the strengths of physics-based and data-driven methods for traffic state prediction. PERL contains a physics model and a residual learning model. Its prediction is the sum of the physics model result and a predicted residual as a correction to it. It preserves the interpretability inherent to physics-based models and has reduced data requirements compared to data-driven methods. Experiments were conducted using a real-world vehicle trajectory dataset. We proposed a PERL model, with the Intelligent Driver Model (IDM) as its physics car-following model and Long Short-Term Memory (LSTM) as its residual learning model. We compare this PERL model with the physics car-following model, data-driven model, and other physics-informed neural network (PINN) models. The result reveals that PERL achieves better prediction with a small dataset, compared to the physics model, data-driven model, and PINN model. Second, the PERL model showed faster convergence during training, offering comparable performance with fewer training samples than the data-driven model and PINN model. Sensitivity analysis also proves comparable performance of PERL using another residual learning model and a physics car-following model.