Abstract:Semantic scene completion (SSC) is essential for achieving comprehensive perception in autonomous driving systems. However, existing SSC methods often overlook the high deployment costs in real-world applications. Traditional architectures, such as 3D Convolutional Neural Networks (3D CNNs) and self-attention mechanisms, face challenges in efficiently capturing long-range dependencies within 3D voxel grids, limiting their effectiveness. To address these issues, we introduce MetaSSC, a novel meta-learning-based framework for SSC that leverages deformable convolution, large-kernel attention, and the Mamba (D-LKA-M) model. Our approach begins with a voxel-based semantic segmentation (SS) pretraining task, aimed at exploring the semantics and geometry of incomplete regions while acquiring transferable meta-knowledge. Using simulated cooperative perception datasets, we supervise the perception training of a single vehicle using aggregated sensor data from multiple nearby connected autonomous vehicles (CAVs), generating richer and more comprehensive labels. This meta-knowledge is then adapted to the target domain through a dual-phase training strategy that does not add extra model parameters, enabling efficient deployment. To further enhance the model's capability in capturing long-sequence relationships within 3D voxel grids, we integrate Mamba blocks with deformable convolution and large-kernel attention into the backbone network. Extensive experiments demonstrate that MetaSSC achieves state-of-the-art performance, significantly outperforming competing models while also reducing deployment costs.
Abstract:Recent advancements in 3D generation have leveraged synthetic datasets with ground truth 3D assets and predefined cameras. However, the potential of adopting real-world datasets, which can produce significantly more realistic 3D scenes, remains largely unexplored. In this work, we delve into the key challenge of the complex and scene-specific camera trajectories found in real-world captures. We introduce Director3D, a robust open-world text-to-3D generation framework, designed to generate both real-world 3D scenes and adaptive camera trajectories. To achieve this, (1) we first utilize a Trajectory Diffusion Transformer, acting as the Cinematographer, to model the distribution of camera trajectories based on textual descriptions. (2) Next, a Gaussian-driven Multi-view Latent Diffusion Model serves as the Decorator, modeling the image sequence distribution given the camera trajectories and texts. This model, fine-tuned from a 2D diffusion model, directly generates pixel-aligned 3D Gaussians as an immediate 3D scene representation for consistent denoising. (3) Lastly, the 3D Gaussians are refined by a novel SDS++ loss as the Detailer, which incorporates the prior of the 2D diffusion model. Extensive experiments demonstrate that Director3D outperforms existing methods, offering superior performance in real-world 3D generation.
Abstract:3D open-vocabulary scene understanding, crucial for advancing augmented reality and robotic applications, involves interpreting and locating specific regions within a 3D space as directed by natural language instructions. To this end, we introduce GOI, a framework that integrates semantic features from 2D vision-language foundation models into 3D Gaussian Splatting (3DGS) and identifies 3D Gaussians of Interest using an Optimizable Semantic-space Hyperplane. Our approach includes an efficient compression method that utilizes scene priors to condense noisy high-dimensional semantic features into compact low-dimensional vectors, which are subsequently embedded in 3DGS. During the open-vocabulary querying process, we adopt a distinct approach compared to existing methods, which depend on a manually set fixed empirical threshold to select regions based on their semantic feature distance to the query text embedding. This traditional approach often lacks universal accuracy, leading to challenges in precisely identifying specific target areas. Instead, our method treats the feature selection process as a hyperplane division within the feature space, retaining only those features that are highly relevant to the query. We leverage off-the-shelf 2D Referring Expression Segmentation (RES) models to fine-tune the semantic-space hyperplane, enabling a more precise distinction between target regions and others. This fine-tuning substantially improves the accuracy of open-vocabulary queries, ensuring the precise localization of pertinent 3D Gaussians. Extensive experiments demonstrate GOI's superiority over previous state-of-the-art methods. Our project page is available at https://goi-hyperplane.github.io/ .
Abstract:In recent years, there has been significant research focusing on addressing security concerns in single-modal person re-identification (ReID) systems that are based on RGB images. However, the safety of cross-modality scenarios, which are more commonly encountered in practical applications involving images captured by infrared cameras, has not received adequate attention. The main challenge in cross-modality ReID lies in effectively dealing with visual differences between different modalities. For instance, infrared images are typically grayscale, unlike visible images that contain color information. Existing attack methods have primarily focused on the characteristics of the visible image modality, overlooking the features of other modalities and the variations in data distribution among different modalities. This oversight can potentially undermine the effectiveness of these methods in image retrieval across diverse modalities. This study represents the first exploration into the security of cross-modality ReID models and proposes a universal perturbation attack specifically designed for cross-modality ReID. This attack optimizes perturbations by leveraging gradients from diverse modality data, thereby disrupting the discriminator and reinforcing the differences between modalities. We conducted experiments on two widely used cross-modality datasets, namely RegDB and SYSU, which not only demonstrated the effectiveness of our method but also provided insights for future enhancements in the robustness of cross-modality ReID systems.