Abstract:Most WSOD methods rely on traditional object proposals to generate candidate regions and are confronted with unstable training, which easily gets stuck in a poor local optimum. In this paper, we introduce a unified, high-capacity weakly supervised object detection (WSOD) network called HUWSOD, which utilizes a comprehensive self-training framework without needing external modules or additional supervision. HUWSOD innovatively incorporates a self-supervised proposal generator and an autoencoder proposal generator with a multi-rate resampling pyramid to replace traditional object proposals, enabling end-to-end WSOD training and inference. Additionally, we implement a holistic self-training scheme that refines detection scores and coordinates through step-wise entropy minimization and consistency-constraint regularization, ensuring consistent predictions across stochastic augmentations of the same image. Extensive experiments on PASCAL VOC and MS COCO demonstrate that HUWSOD competes with state-of-the-art WSOD methods, eliminating the need for offline proposals and additional data. The peak performance of HUWSOD approaches that of fully-supervised Faster R-CNN. Our findings also indicate that randomly initialized boxes, although significantly different from well-designed offline object proposals, are effective for WSOD training.
Abstract:Semi-Supervised Instance Segmentation (SSIS) aims to leverage an amount of unlabeled data during training. Previous frameworks primarily utilized the RGB information of unlabeled images to generate pseudo-labels. However, such a mechanism often introduces unstable noise, as a single instance can display multiple RGB values. To overcome this limitation, we introduce a Depth-Guided (DG) SSIS framework. This framework uses depth maps extracted from input images, which represent individual instances with closely associated distance values, offering precise contours for distinct instances. Unlike RGB data, depth maps provide a unique perspective, making their integration into the SSIS process complex. To this end, we propose Depth Feature Fusion, which integrates features extracted from depth estimation. This integration allows the model to understand depth information better and ensure its effective utilization. Additionally, to manage the variability of depth images during training, we introduce the Depth Controller. This component enables adaptive adjustments of the depth map, enhancing convergence speed and dynamically balancing the loss weights between RGB and depth maps. Extensive experiments conducted on the COCO and Cityscapes datasets validate the efficacy of our proposed method. Our approach establishes a new benchmark for SSIS, outperforming previous methods. Specifically, our DG achieves 22.29%, 31.47%, and 35.14% mAP for 1%, 5%, and 10% labeled data on the COCO dataset, respectively.
Abstract:3D open-vocabulary scene understanding, crucial for advancing augmented reality and robotic applications, involves interpreting and locating specific regions within a 3D space as directed by natural language instructions. To this end, we introduce GOI, a framework that integrates semantic features from 2D vision-language foundation models into 3D Gaussian Splatting (3DGS) and identifies 3D Gaussians of Interest using an Optimizable Semantic-space Hyperplane. Our approach includes an efficient compression method that utilizes scene priors to condense noisy high-dimensional semantic features into compact low-dimensional vectors, which are subsequently embedded in 3DGS. During the open-vocabulary querying process, we adopt a distinct approach compared to existing methods, which depend on a manually set fixed empirical threshold to select regions based on their semantic feature distance to the query text embedding. This traditional approach often lacks universal accuracy, leading to challenges in precisely identifying specific target areas. Instead, our method treats the feature selection process as a hyperplane division within the feature space, retaining only those features that are highly relevant to the query. We leverage off-the-shelf 2D Referring Expression Segmentation (RES) models to fine-tune the semantic-space hyperplane, enabling a more precise distinction between target regions and others. This fine-tuning substantially improves the accuracy of open-vocabulary queries, ensuring the precise localization of pertinent 3D Gaussians. Extensive experiments demonstrate GOI's superiority over previous state-of-the-art methods. Our project page is available at https://goi-hyperplane.github.io/ .
Abstract:Despite weakly supervised object detection (WSOD) being a promising step toward evading strong instance-level annotations, its capability is confined to closed-set categories within a single training dataset. In this paper, we propose a novel weakly supervised open-vocabulary object detection framework, namely WSOVOD, to extend traditional WSOD to detect novel concepts and utilize diverse datasets with only image-level annotations. To achieve this, we explore three vital strategies, including dataset-level feature adaptation, image-level salient object localization, and region-level vision-language alignment. First, we perform data-aware feature extraction to produce an input-conditional coefficient, which is leveraged into dataset attribute prototypes to identify dataset bias and help achieve cross-dataset generalization. Second, a customized location-oriented weakly supervised region proposal network is proposed to utilize high-level semantic layouts from the category-agnostic segment anything model to distinguish object boundaries. Lastly, we introduce a proposal-concept synchronized multiple-instance network, i.e., object mining and refinement with visual-semantic alignment, to discover objects matched to the text embeddings of concepts. Extensive experiments on Pascal VOC and MS COCO demonstrate that the proposed WSOVOD achieves new state-of-the-art compared with previous WSOD methods in both close-set object localization and detection tasks. Meanwhile, WSOVOD enables cross-dataset and open-vocabulary learning to achieve on-par or even better performance than well-established fully-supervised open-vocabulary object detection (FSOVOD).
Abstract:In this paper, we study teacher-student learning from the perspective of data initialization and propose a novel algorithm called Active Teacher(Source code are available at: \url{https://github.com/HunterJ-Lin/ActiveTeacher}) for semi-supervised object detection (SSOD). Active Teacher extends the teacher-student framework to an iterative version, where the label set is partially initialized and gradually augmented by evaluating three key factors of unlabeled examples, including difficulty, information and diversity. With this design, Active Teacher can maximize the effect of limited label information while improving the quality of pseudo-labels. To validate our approach, we conduct extensive experiments on the MS-COCO benchmark and compare Active Teacher with a set of recently proposed SSOD methods. The experimental results not only validate the superior performance gain of Active Teacher over the compared methods, but also show that it enables the baseline network, ie, Faster-RCNN, to achieve 100% supervised performance with much less label expenditure, ie 40% labeled examples on MS-COCO. More importantly, we believe that the experimental analyses in this paper can provide useful empirical knowledge for data annotation in practical applications.