Abstract:This paper addresses the problem of vision-based pedestrian localization, which estimates a pedestrian's location using images and camera parameters. In practice, however, calibrated camera parameters often deviate from the ground truth, leading to inaccuracies in localization. To address this issue, we propose an anchor-based method that leverages fixed-position anchors to reduce the impact of camera parameter errors. We provide a theoretical analysis that demonstrates the robustness of our approach. Experiments conducted on simulated, real-world, and public datasets show that our method significantly improves localization accuracy and remains resilient to noise in camera parameters, compared to methods without anchors.
Abstract:Medical generative models, acknowledged for their high-quality sample generation ability, have accelerated the fast growth of medical applications. However, recent works concentrate on separate medical generation models for distinct medical tasks and are restricted to inadequate medical multi-modal knowledge, constraining medical comprehensive diagnosis. In this paper, we propose MedM2G, a Medical Multi-Modal Generative framework, with the key innovation to align, extract, and generate medical multi-modal within a unified model. Extending beyond single or two medical modalities, we efficiently align medical multi-modal through the central alignment approach in the unified space. Significantly, our framework extracts valuable clinical knowledge by preserving the medical visual invariant of each imaging modal, thereby enhancing specific medical information for multi-modal generation. By conditioning the adaptive cross-guided parameters into the multi-flow diffusion framework, our model promotes flexible interactions among medical multi-modal for generation. MedM2G is the first medical generative model that unifies medical generation tasks of text-to-image, image-to-text, and unified generation of medical modalities (CT, MRI, X-ray). It performs 5 medical generation tasks across 10 datasets, consistently outperforming various state-of-the-art works.
Abstract:3D single object tracking (SOT) is an important and challenging task for the autonomous driving and mobile robotics. Most existing methods perform tracking between two consecutive frames while ignoring the motion patterns of the target over a series of frames, which would cause performance degradation in the scenes with sparse points. To break through this limitation, we introduce Sequence-to-Sequence tracking paradigm and a tracker named SeqTrack3D to capture target motion across continuous frames. Unlike previous methods that primarily adopted three strategies: matching two consecutive point clouds, predicting relative motion, or utilizing sequential point clouds to address feature degradation, our SeqTrack3D combines both historical point clouds and bounding box sequences. This novel method ensures robust tracking by leveraging location priors from historical boxes, even in scenes with sparse points. Extensive experiments conducted on large-scale datasets show that SeqTrack3D achieves new state-of-the-art performances, improving by 6.00% on NuScenes and 14.13% on Waymo dataset. The code will be made public at https://github.com/aron-lin/seqtrack3d.
Abstract:Medical vision-language pre-training (Med-VLP) models have recently accelerated the fast-growing medical diagnostics application. However, most Med-VLP models learn task-specific representations independently from scratch, thereby leading to great inflexibility when they work across multiple fine-tuning tasks. In this work, we propose UniDCP, a Unified medical vision-language model with Dynamic Cross-modal learnable Prompts, which can be plastically applied to multiple medical vision-language tasks. Specifically, we explicitly construct a unified framework to harmonize diverse inputs from multiple pretraining tasks by leveraging cross-modal prompts for unification, which accordingly can accommodate heterogeneous medical fine-tuning tasks. Furthermore, we conceive a dynamic cross-modal prompt optimizing strategy that optimizes the prompts within the shareable space for implicitly processing the shareable clinic knowledge. UniDCP is the first Med-VLP model capable of performing all 8 medical uni-modal and cross-modal tasks over 14 corresponding datasets, consistently yielding superior results over diverse state-of-the-art methods.
Abstract:As an emerging concept, steganography without embedding (SWE) hides a secret message without directly embedding it into a cover. Thus, SWE has the unique advantage of being immune to typical steganalysis methods and can better protect the secret message from being exposed. However, existing SWE methods are generally criticized for their poor payload capacity and low fidelity of recovered secret messages. In this paper, we propose a novel steganography-without-embedding technique, named DF-SWE, which addresses the aforementioned drawbacks and produces diverse and natural stego images. Specifically, DF-SWE employs a reversible circulation of double flow to build a reversible bijective transformation between the secret image and the generated stego image. Hence, it provides a way to directly generate stego images from secret images without a cover image. Besides leveraging the invertible property, DF-SWE can invert a secret image from a generated stego image in a nearly lossless manner and increases the fidelity of extracted secret images. To the best of our knowledge, DF-SWE is the first SWE method that can hide large images and multiple images into one image with the same size, significantly enhancing the payload capacity. According to the experimental results, the payload capacity of DF-SWE achieves 24-72 BPP is 8000-16000 times compared to its competitors while producing diverse images to minimize the exposure risk. Importantly, DF-SWE can be applied in the steganography of secret images in various domains without requiring training data from the corresponding domains. This domain-agnostic property suggests that DF-SWE can 1) be applied to hiding private data and 2) be deployed in resource-limited systems.
Abstract:End users face a choice between privacy and efficiency in current Large Language Model (LLM) service paradigms. In cloud-based paradigms, users are forced to compromise data locality for generation quality and processing speed. Conversely, edge device paradigms maintain data locality but fail to deliver satisfactory performance. In this work, we propose a novel LLM service paradigm that distributes privacy-sensitive computation on edge devices and shared computation in the cloud. Only activations are transmitted between the central cloud and edge devices to ensure data locality. Our core innovation, PrivateLoRA, addresses the challenging communication overhead by exploiting the low rank of residual activations, achieving over 95% communication reduction. Consequently, PrivateLoRA effectively maintains data locality and is extremely resource efficient. Under standard 5G networks, PrivateLoRA achieves throughput over 300% of device-only solutions for 7B models and over 80% of an A100 GPU for 33B models. PrivateLoRA also provides tuning performance comparable to LoRA for advanced personalization. Our approach democratizes access to state-of-the-art generative AI for edge devices, paving the way for more tailored LLM experiences for the general public. To our knowledge, our proposed framework is the first efficient and privacy-preserving LLM solution in the literature.
Abstract:LoRA achieves remarkable resource efficiency and comparable performance when adapting LLMs for specific tasks. Since ChatGPT demonstrated superior performance on various tasks, there has been a growing desire to adapt one model for all tasks. However, the explicit low-rank of LoRA limits the adaptation performance in complex multi-task scenarios. LoRA is dominated by a small number of top singular vectors while fine-tuning decomposes into a set of less important unitary transforms. In this paper, we propose MultiLoRA for better multi-task adaptation by reducing the dominance of top singular vectors observed in LoRA. MultiLoRA scales LoRA modules horizontally and change parameter initialization of adaptation matrices to reduce parameter dependency, thus yields more balanced unitary subspaces. We unprecedentedly construct specialized training data by mixing datasets of instruction follow, natural language understanding, world knowledge, to cover semantically and syntactically different samples. With only 2.5% of additional parameters, MultiLoRA outperforms single LoRA counterparts and fine-tuning on multiple benchmarks and model scales. Further investigation into weight update matrices of MultiLoRA exhibits reduced dependency on top singular vectors and more democratic unitary transform contributions.
Abstract:The recurrent neural network and its variants have shown great success in processing sequences in recent years. However, this deep neural network has not aroused much attention in anomaly detection through predictively process monitoring. Furthermore, the traditional statistic models work on assumptions and hypothesis tests, while neural network (NN) models do not need that many assumptions. This flexibility enables NN models to work efficiently on data with time-varying variability, a common inherent aspect of data in practice. This paper explores the ability of the recurrent neural network structure to monitor processes and proposes a control chart based on long short-term memory (LSTM) prediction intervals for data with time-varying variability. The simulation studies provide empirical evidence that the proposed model outperforms other NN-based predictive monitoring methods for mean shift detection. The proposed method is also applied to time series sensor data, which confirms that the proposed method is an effective technique for detecting abnormalities.
Abstract:3D single object tracking with LiDAR points is an important task in the computer vision field. Previous methods usually adopt the matching-based or motion-centric paradigms to estimate the current target status. However, the former is sensitive to the similar distractors and the sparseness of point cloud due to relying on appearance matching, while the latter usually focuses on short-term motion clues (eg. two frames) and ignores the long-term motion pattern of target. To address these issues, we propose a mixed paradigm with two stages, named MTM-Tracker, which combines motion modeling with feature matching into a single network. Specifically, in the first stage, we exploit the continuous historical boxes as motion prior and propose an encoder-decoder structure to locate target coarsely. Then, in the second stage, we introduce a feature interaction module to extract motion-aware features from consecutive point clouds and match them to refine target movement as well as regress other target states. Extensive experiments validate that our paradigm achieves competitive performance on large-scale datasets (70.9% in KITTI and 51.70% in NuScenes). The code will be open soon at https://github.com/LeoZhiheng/MTM-Tracker.git.
Abstract:Recent works in cyber deception study how to deter malicious intrusion by generating multiple fake versions of a critical document to impose costs on adversaries who need to identify the correct information. However, existing approaches are context-agnostic, resulting in sub-optimal and unvaried outputs. We propose a novel context-aware model, Fake Document Infilling (FDI), by converting the problem to a controllable mask-then-infill procedure. FDI masks important concepts of varied lengths in the document, then infills a realistic but fake alternative considering both the previous and future contexts. We conduct comprehensive evaluations on technical documents and news stories. Results show that FDI outperforms the baselines in generating highly believable fakes with moderate modification to protect critical information and deceive adversaries.