Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University
Abstract:Multimodal Large Language Model (MLLM) has recently garnered attention as a prominent research focus. By harnessing powerful LLM, it facilitates a transition of conversational generative AI from unimodal text to performing multimodal tasks. This boom begins to significantly impact medical field. However, general visual language model (VLM) lacks sophisticated comprehension for medical visual question answering (Med-VQA). Even models specifically tailored for medical domain tend to produce vague answers with weak visual relevance. In this paper, we propose a fine-grained adaptive VLM architecture for Chinese medical visual conversations through parameter-efficient tuning. Specifically, we devise a fusion module with fine-grained vision encoders to achieve enhancement for subtle medical visual semantics. Then we note data redundancy common to medical scenes is ignored in most prior works. In cases of a single text paired with multiple figures, we utilize weighted scoring with knowledge distillation to adaptively screen valid images mirroring text descriptions. For execution, we leverage a large-scale multimodal Chinese ultrasound dataset obtained from the hospital. We create instruction-following data based on text from professional doctors, which ensures effective tuning. With enhanced model and quality data, our Large Chinese Language and Vision Assistant for Ultrasound (LLaVA-Ultra) shows strong capability and robustness to medical scenarios. On three Med-VQA datasets, LLaVA-Ultra surpasses previous state-of-the-art models on various metrics.
Abstract:Recent insights have revealed that rate-coding is a primary form of information representation captured by surrogate-gradient-based Backpropagation Through Time (BPTT) in training deep Spiking Neural Networks (SNNs). Motivated by these findings, we propose rate-based backpropagation, a training strategy specifically designed to exploit rate-based representations to reduce the complexity of BPTT. Our method minimizes reliance on detailed temporal derivatives by focusing on averaged dynamics, streamlining the computational graph to reduce memory and computational demands of SNNs training. We substantiate the rationality of the gradient approximation between BPTT and the proposed method through both theoretical analysis and empirical observations. Comprehensive experiments on CIFAR-10, CIFAR-100, ImageNet, and CIFAR10-DVS validate that our method achieves comparable performance to BPTT counterparts, and surpasses state-of-the-art efficient training techniques. By leveraging the inherent benefits of rate-coding, this work sets the stage for more scalable and efficient SNNs training within resource-constrained environments. Our code is available at https://github.com/Tab-ct/rate-based-backpropagation.
Abstract:The growing interest in embodied intelligence has brought ego-centric perspectives to contemporary research. One significant challenge within this realm is the accurate localization and tracking of objects in ego-centric videos, primarily due to the substantial variability in viewing angles. Addressing this issue, this paper introduces a novel zero-shot approach for the 3D reconstruction and tracking of all objects from the ego-centric video. We present Ego3DT, a novel framework that initially identifies and extracts detection and segmentation information of objects within the ego environment. Utilizing information from adjacent video frames, Ego3DT dynamically constructs a 3D scene of the ego view using a pre-trained 3D scene reconstruction model. Additionally, we have innovated a dynamic hierarchical association mechanism for creating stable 3D tracking trajectories of objects in ego-centric videos. Moreover, the efficacy of our approach is corroborated by extensive experiments on two newly compiled datasets, with 1.04x - 2.90x in HOTA, showcasing the robustness and accuracy of our method in diverse ego-centric scenarios.
Abstract:In this paper, we propose a novel Temporal Sequence-Aware Model (TSAM) for few-shot action recognition (FSAR), which incorporates a sequential perceiver adapter into the pre-training framework, to integrate both the spatial information and the sequential temporal dynamics into the feature embeddings. Different from the existing fine-tuning approaches that capture temporal information by exploring the relationships among all the frames, our perceiver-based adapter recurrently captures the sequential dynamics alongside the timeline, which could perceive the order change. To obtain the discriminative representations for each class, we extend a textual corpus for each class derived from the large language models (LLMs) and enrich the visual prototypes by integrating the contextual semantic information. Besides, We introduce an unbalanced optimal transport strategy for feature matching that mitigates the impact of class-unrelated features, thereby facilitating more effective decision-making. Experimental results on five FSAR datasets demonstrate that our method set a new benchmark, beating the second-best competitors with large margins.
Abstract:Building an embodied agent system with a large language model (LLM) as its core is a promising direction. Due to the significant costs and uncontrollable factors associated with deploying and training such agents in the real world, we have decided to begin our exploration within the Minecraft environment. Our STEVE Series agents can complete basic tasks in a virtual environment and more challenging tasks such as navigation and even creative tasks, with an efficiency far exceeding previous state-of-the-art methods by a factor of $2.5\times$ to $7.3\times$. We begin our exploration with a vanilla large language model, augmenting it with a vision encoder and an action codebase trained on our collected high-quality dataset STEVE-21K. Subsequently, we enhanced it with a Critic and memory to transform it into a complex system. Finally, we constructed a hierarchical multi-agent system. Our recent work explored how to prune the agent system through knowledge distillation. In the future, we will explore more potential applications of STEVE agents in the real world.
Abstract:Vision-based roadside 3D object detection has attracted rising attention in autonomous driving domain, since it encompasses inherent advantages in reducing blind spots and expanding perception range. While previous work mainly focuses on accurately estimating depth or height for 2D-to-3D mapping, ignoring the position approximation error in the voxel pooling process. Inspired by this insight, we propose a novel voxel pooling strategy to reduce such error, dubbed BEVSpread. Specifically, instead of bringing the image features contained in a frustum point to a single BEV grid, BEVSpread considers each frustum point as a source and spreads the image features to the surrounding BEV grids with adaptive weights. To achieve superior propagation performance, a specific weight function is designed to dynamically control the decay speed of the weights according to distance and depth. Aided by customized CUDA parallel acceleration, BEVSpread achieves comparable inference time as the original voxel pooling. Extensive experiments on two large-scale roadside benchmarks demonstrate that, as a plug-in, BEVSpread can significantly improve the performance of existing frustum-based BEV methods by a large margin of (1.12, 5.26, 3.01) AP in vehicle, pedestrian and cyclist.
Abstract:City scene generation has gained significant attention in autonomous driving, smart city development, and traffic simulation. It helps enhance infrastructure planning and monitoring solutions. Existing methods have employed a two-stage process involving city layout generation, typically using Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), or Transformers, followed by neural rendering. These techniques often exhibit limited diversity and noticeable artifacts in the rendered city scenes. The rendered scenes lack variety, resembling the training images, resulting in monotonous styles. Additionally, these methods lack planning capabilities, leading to less realistic generated scenes. In this paper, we introduce CityCraft, an innovative framework designed to enhance both the diversity and quality of urban scene generation. Our approach integrates three key stages: initially, a diffusion transformer (DiT) model is deployed to generate diverse and controllable 2D city layouts. Subsequently, a Large Language Model(LLM) is utilized to strategically make land-use plans within these layouts based on user prompts and language guidelines. Based on the generated layout and city plan, we utilize the asset retrieval module and Blender for precise asset placement and scene construction. Furthermore, we contribute two new datasets to the field: 1)CityCraft-OSM dataset including 2D semantic layouts of urban areas, corresponding satellite images, and detailed annotations. 2) CityCraft-Buildings dataset, featuring thousands of diverse, high-quality 3D building assets. CityCraft achieves state-of-the-art performance in generating realistic 3D cities.
Abstract:As one of the tasks in Image Fusion, Infrared and Visible Image Fusion aims to integrate complementary information captured by sensors of different modalities into a single image. The Selective State Space Model (SSSM), known for its ability to capture long-range dependencies, has demonstrated its potential in the field of computer vision. However, in image fusion, current methods underestimate the potential of SSSM in capturing the global spatial information of both modalities. This limitation prevents the simultaneous consideration of the global spatial information from both modalities during interaction, leading to a lack of comprehensive perception of salient targets. Consequently, the fusion results tend to bias towards one modality instead of adaptively preserving salient targets. To address this issue, we propose the Saliency-aware Selective State Space Fusion Model (S4Fusion). In our S4Fusion, the designed Cross-Modal Spatial Awareness Module (CMSA) can simultaneously focus on global spatial information from both modalities while facilitating their interaction, thereby comprehensively capturing complementary information. Additionally, S4Fusion leverages a pre-trained network to perceive uncertainty in the fused images. By minimizing this uncertainty, S4Fusion adaptively highlights salient targets from both images. Extensive experiments demonstrate that our approach produces high-quality images and enhances performance in downstream tasks.
Abstract:Generating long and consistent videos has emerged as a significant yet challenging problem. While most existing diffusion-based video generation models, derived from image generation models, demonstrate promising performance in generating short videos, their simple conditioning mechanism and sampling strategy-originally designed for image generation-cause severe performance degradation when adapted to long video generation. This results in prominent temporal inconsistency and overexposure. Thus, in this work, we introduce FlexiFilm, a new diffusion model tailored for long video generation. Our framework incorporates a temporal conditioner to establish a more consistent relationship between generation and multi-modal conditions, and a resampling strategy to tackle overexposure. Empirical results demonstrate FlexiFilm generates long and consistent videos, each over 30 seconds in length, outperforming competitors in qualitative and quantitative analyses. Project page: https://y-ichen.github.io/FlexiFilm-Page/
Abstract:Recently, integrating video foundation models and large language models to build a video understanding system can overcome the limitations of specific pre-defined vision tasks. Yet, existing methods either employ complex spatial-temporal modules or rely heavily on additional perception models to extract temporal features for video understanding, and they only perform well on short videos. For long videos, the computational complexity and memory costs associated with long-term temporal connections are significantly increased, posing additional challenges.Taking advantage of the Atkinson-Shiffrin memory model, with tokens in Transformers being employed as the carriers of memory in combination with our specially designed memory mechanism, we propose MovieChat to overcome these challenges. We lift pre-trained multi-modal large language models for understanding long videos without incorporating additional trainable temporal modules, employing a zero-shot approach. MovieChat achieves state-of-the-art performance in long video understanding, along with the released MovieChat-1K benchmark with 1K long video, 2K temporal grounding labels, and 14K manual annotations for validation of the effectiveness of our method. The code along with the dataset can be accessed via the following https://github.com/rese1f/MovieChat.