Abstract:Quantization of Deep Neural Network (DNN) activations is a commonly used technique to reduce compute and memory demands during DNN inference, which can be particularly beneficial on resource-constrained devices. To achieve high accuracy, existing methods for quantizing activations rely on complex mathematical computations or perform extensive searches for the best hyper-parameters. However, these expensive operations are impractical on devices with limited computation capabilities, memory capacities, and energy budgets. Furthermore, many existing methods do not focus on sub-6-bit (or deep) quantization. To fill these gaps, in this paper we propose DQA (Deep Quantization of DNN Activations), a new method that focuses on sub-6-bit quantization of activations and leverages simple shifting-based operations and Huffman coding to be efficient and achieve high accuracy. We evaluate DQA with 3, 4, and 5-bit quantization levels and three different DNN models for two different tasks, image classification and image segmentation, on two different datasets. DQA shows significantly better accuracy (up to 29.28%) compared to the direct quantization method and the state-of-the-art NoisyQuant for sub-6-bit quantization.
Abstract:The increase in open-source availability of Large Language Models (LLMs) has enabled users to deploy them on more and more resource-constrained edge devices to reduce reliance on network connections and provide more privacy. However, the high computation and memory demands of LLMs make their execution on resource-constrained edge devices challenging and inefficient. To address this issue, designing new and efficient edge accelerators for LLM inference is crucial. FPGA-based accelerators are ideal for LLM acceleration due to their reconfigurability, as they enable model-specific optimizations and higher performance per watt. However, creating and integrating FPGA-based accelerators for LLMs (particularly on edge devices) has proven challenging, mainly due to the limited hardware design flows for LLMs in existing FPGA platforms. To tackle this issue, in this paper we first propose a new design platform, named SECDA-LLM, that utilizes the SECDA methodology to streamline the process of designing, integrating, and deploying efficient FPGA-based LLM accelerators for the llama.cpp inference framework. We then demonstrate, through a case study, the potential benefits of SECDA-LLM by creating a new MatMul accelerator that supports block floating point quantized operations for LLMs. Our initial accelerator design, deployed on the PYNQ-Z1 board, reduces latency 1.7 seconds per token or ~2 seconds per word) by 11x over the dual-core Arm NEON-based CPU execution for the TinyLlama model.
Abstract:City scene generation has gained significant attention in autonomous driving, smart city development, and traffic simulation. It helps enhance infrastructure planning and monitoring solutions. Existing methods have employed a two-stage process involving city layout generation, typically using Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), or Transformers, followed by neural rendering. These techniques often exhibit limited diversity and noticeable artifacts in the rendered city scenes. The rendered scenes lack variety, resembling the training images, resulting in monotonous styles. Additionally, these methods lack planning capabilities, leading to less realistic generated scenes. In this paper, we introduce CityCraft, an innovative framework designed to enhance both the diversity and quality of urban scene generation. Our approach integrates three key stages: initially, a diffusion transformer (DiT) model is deployed to generate diverse and controllable 2D city layouts. Subsequently, a Large Language Model(LLM) is utilized to strategically make land-use plans within these layouts based on user prompts and language guidelines. Based on the generated layout and city plan, we utilize the asset retrieval module and Blender for precise asset placement and scene construction. Furthermore, we contribute two new datasets to the field: 1)CityCraft-OSM dataset including 2D semantic layouts of urban areas, corresponding satellite images, and detailed annotations. 2) CityCraft-Buildings dataset, featuring thousands of diverse, high-quality 3D building assets. CityCraft achieves state-of-the-art performance in generating realistic 3D cities.
Abstract:City layout generation has recently gained significant attention. The goal of this task is to automatically generate the layout of a city scene, including elements such as roads, buildings, vegetation, as well as other urban infrastructures. Previous methods using VAEs or GANs for 3D city layout generation offer limited diversity and constrained interactivity, only allowing users to selectively regenerate parts of the layout, which greatly limits customization. In this paper, we propose CityGen, a novel end-to-end framework for infinite, diverse and controllable 3D city layout generation.First, we propose an outpainting pipeline to extend the local layout to an infinite city layout. Then, we utilize a multi-scale diffusion model to generate diverse and controllable local semantic layout patches. The extensive experiments show that CityGen achieves state-of-the-art (SOTA) performance under FID and KID in generating an infinite and controllable 3D city layout. CityGen demonstrates promising applicability in fields like smart cities, urban planning, and digital simulation.
Abstract:Deep learning has the potential to revolutionize sports performance, with applications ranging from perception and comprehension to decision. This paper presents a comprehensive survey of deep learning in sports performance, focusing on three main aspects: algorithms, datasets and virtual environments, and challenges. Firstly, we discuss the hierarchical structure of deep learning algorithms in sports performance which includes perception, comprehension and decision while comparing their strengths and weaknesses. Secondly, we list widely used existing datasets in sports and highlight their characteristics and limitations. Finally, we summarize current challenges and point out future trends of deep learning in sports. Our survey provides valuable reference material for researchers interested in deep learning in sports applications.
Abstract:Face recognition in complex scenes suffers severe challenges coming from perturbations such as pose deformation, ill illumination, partial occlusion. Some methods utilize depth estimation to obtain depth corresponding to RGB to improve the accuracy of face recognition. However, the depth generated by them suffer from image blur, which introduces noise in subsequent RGB-D face recognition tasks. In addition, existing RGB-D face recognition methods are unable to fully extract complementary features. In this paper, we propose a fine-grained facial depth generation network and an improved multimodal complementary feature learning network. Extensive experiments on the Lock3DFace dataset and the IIIT-D dataset show that the proposed FFDGNet and I MCFLNet can improve the accuracy of RGB-D face recognition while achieving the state-of-the-art performance.
Abstract:Medical images often contain artificial markers added by doctors, which can negatively affect the accuracy of AI-based diagnosis. To address this issue and recover the missing visual contents, inpainting techniques are highly needed. However, existing inpainting methods require manual mask input, limiting their application scenarios. In this paper, we introduce a novel blind inpainting method that automatically completes visual contents without specifying masks for target areas in an image. Our proposed model includes a mask-free reconstruction network and an object-aware discriminator. The reconstruction network consists of two branches that predict the corrupted regions with artificial markers and simultaneously recover the missing visual contents. The object-aware discriminator relies on the powerful recognition capabilities of the dense object detector to ensure that the markers of reconstructed images cannot be detected in any local regions. As a result, the reconstructed image can be close to the clean one as much as possible. Our proposed method is evaluated on different medical image datasets, covering multiple imaging modalities such as ultrasound (US), magnetic resonance imaging (MRI), and electron microscopy (EM), demonstrating that our method is effective and robust against various unknown missing region patterns.
Abstract:With the development of computer-assisted techniques, research communities including biochemistry and deep learning have been devoted into the drug discovery field for over a decade. Various applications of deep learning have drawn great attention in drug discovery, such as molecule generation, molecular property prediction, retrosynthesis prediction, and reaction prediction. While most existing surveys only focus on one of the applications, limiting the view of researchers in the community. In this paper, we present a comprehensive review on the aforementioned four aspects, and discuss the relationships among different applications. The latest literature and classical benchmarks are presented for better understanding the development of variety of approaches. We commence by summarizing the molecule representation format in these works, followed by an introduction of recent proposed approaches for each of the four tasks. Furthermore, we review a variety of commonly used datasets and evaluation metrics and compare the performance of deep learning-based models. Finally, we conclude by identifying remaining challenges and discussing the future trend for deep learning methods in drug discovery.
Abstract:Fully convolutional networks are robust in performing semantic segmentation, with many applications from signal processing to computer vision. From the fundamental principles of variational quantum algorithms, we propose a feasible pure quantum architecture that can be operated on noisy intermediate-scale quantum devices. In this work, a parameterized quantum circuit consisting of three layers, convolutional, pooling, and upsampling, is characterized by generative one-qubit and two-qubit gates and driven by a classical optimizer. This architecture supplies a solution for realizing the dynamical programming on a one-way quantum computer and maximally taking advantage of quantum computing throughout the calculation. Moreover, our algorithm works on many physical platforms, and particularly the upsampling layer can use either conventional qubits or multiple-level systems. Through numerical simulations, our study represents the successful training of a pure quantum fully convolutional network and discusses advantages by comparing it with the hybrid solution.
Abstract:Support vector data description (SVDD) is a popular anomaly detection technique. The SVDD classifier partitions the whole data space into an $\textit{inlier}$ region, which consists of the region $\textit{near}$ the training data, and an $\textit{outlier}$ region, which consists of points $\textit{away}$ from the training data. The computation of the SVDD classifier requires a kernel function, for which the Gaussian kernel is a common choice. The Gaussian kernel has a bandwidth parameter, and it is important to set the value of this parameter correctly for good results. A small bandwidth leads to overfitting such that the resulting SVDD classifier overestimates the number of anomalies, whereas a large bandwidth leads to underfitting and an inability to detect many anomalies. In this paper, we present a new unsupervised method for selecting the Gaussian kernel bandwidth. Our method, which exploits the low-rank representation of the kernel matrix to suggest a kernel bandwidth value, is competitive with existing bandwidth selection methods.