Abstract:Measurement of a physical quantity such as light intensity is an integral part of many reconstruction and decision scenarios but can be costly in terms of acquisition time, invasion of or damage to the environment and storage. Data minimisation and compliance with data protection laws is also an important consideration. Where there are a range of measurements that can be made, some may be more informative and compliant with the overall measurement objective than others. We develop an active sequential inference algorithm that uses the low dimensional representational latent space from a variational autoencoder (VAE) to choose which measurement to make next. Our aim is to recover high dimensional data by making as few measurements as possible. We adapt the VAE encoder to map partial data measurements on to the latent space of the complete data. The algorithm draws samples from this latent space and uses the VAE decoder to generate data conditional on the partial measurements. Estimated measurements are made on the generated data and fed back through the partial VAE encoder to the latent space where they can be evaluated prior to making a measurement. Starting from no measurements and a normal prior on the latent space, we consider alternative strategies for choosing the next measurement and updating the predictive posterior prior for the next step. The algorithm is illustrated using the Fashion MNIST dataset and a novel convolutional Hadamard pattern measurement basis. We see that useful patterns are chosen within 10 steps, leading to the convergence of the guiding generative images. Compared with using stochastic variational inference to infer the parameters of the posterior distribution for each generated data point individually, the partial VAE framework can efficiently process batches of generated data and obtains superior results with minimal measurements.
Abstract:Interactive Text-to-Image Retrieval (I-TIR) has emerged as a transformative user-interactive tool for applications in domains such as e-commerce and education. Yet, current methodologies predominantly depend on finetuned Multimodal Large Language Models (MLLMs), which face two critical limitations: (1) Finetuning imposes prohibitive computational overhead and long-term maintenance costs. (2) Finetuning narrows the pretrained knowledge distribution of MLLMs, reducing their adaptability to novel scenarios. These issues are exacerbated by the inherently dynamic nature of real-world I-TIR systems, where queries and image databases evolve in complexity and diversity, often deviating from static training distributions. To overcome these constraints, we propose Diffusion Augmented Retrieval (DAR), a paradigm-shifting framework that bypasses MLLM finetuning entirely. DAR synergizes Large Language Model (LLM)-guided query refinement with Diffusion Model (DM)-based visual synthesis to create contextually enriched intermediate representations. This dual-modality approach deciphers nuanced user intent more holistically, enabling precise alignment between textual queries and visually relevant images. Rigorous evaluations across four benchmarks reveal DAR's dual strengths: (1) Matches state-of-the-art finetuned I-TIR models on straightforward queries without task-specific training. (2) Scalable Generalization: Surpasses finetuned baselines by 7.61% in Hits@10 (top-10 accuracy) under multi-turn conversational complexity, demonstrating robustness to intricate, distributionally shifted interactions. By eliminating finetuning dependencies and leveraging generative-augmented representations, DAR establishes a new trajectory for efficient, adaptive, and scalable cross-modal retrieval systems.
Abstract:Video prediction is a crucial task for intelligent agents such as robots and autonomous vehicles, since it enables them to anticipate and act early on time-critical incidents. State-of-the-art video prediction methods typically model the dynamics of a scene jointly and implicitly, without any explicit decomposition into separate objects. This is challenging and potentially sub-optimal, as every object in a dynamic scene has their own pattern of movement, typically somewhat independent of others. In this paper, we investigate the benefit of explicitly modeling the objects in a dynamic scene separately within the context of latent-transformer video prediction models. We conduct detailed and carefully-controlled experiments on both synthetic and real-world datasets; our results show that decomposing a dynamic scene leads to higher quality predictions compared with models of a similar capacity that lack such decomposition.
Abstract:Quantization of Deep Neural Network (DNN) activations is a commonly used technique to reduce compute and memory demands during DNN inference, which can be particularly beneficial on resource-constrained devices. To achieve high accuracy, existing methods for quantizing activations rely on complex mathematical computations or perform extensive searches for the best hyper-parameters. However, these expensive operations are impractical on devices with limited computation capabilities, memory capacities, and energy budgets. Furthermore, many existing methods do not focus on sub-6-bit (or deep) quantization. To fill these gaps, in this paper we propose DQA (Deep Quantization of DNN Activations), a new method that focuses on sub-6-bit quantization of activations and leverages simple shifting-based operations and Huffman coding to be efficient and achieve high accuracy. We evaluate DQA with 3, 4, and 5-bit quantization levels and three different DNN models for two different tasks, image classification and image segmentation, on two different datasets. DQA shows significantly better accuracy (up to 29.28%) compared to the direct quantization method and the state-of-the-art NoisyQuant for sub-6-bit quantization.
Abstract:We propose an unsupervised image segmentation method using features from pre-trained text-to-image diffusion models. Inspired by classic spectral clustering approaches, we construct adjacency matrices from self-attention layers between image patches and recursively partition using Normalised Cuts. A key insight is that self-attention probability distributions, which capture semantic relations between patches, can be interpreted as a transition matrix for random walks across the image. We leverage this by first using Random Walk Normalized Cuts directly on these self-attention activations to partition the image, minimizing transition probabilities between clusters while maximizing coherence within clusters. Applied recursively, this yields a hierarchical segmentation that reflects the rich semantics in the pre-trained attention layers, without any additional training. Next, we explore other ways to build the NCuts adjacency matrix from features, and how we can use the random walk interpretation of self-attention to capture long-range relationships. Finally, we propose an approach to automatically determine the NCut cost criterion, avoiding the need to tune this manually. We quantitatively analyse the effect incorporating different features, a constant versus dynamic NCut threshold, and incorporating multi-node paths when constructing the NCuts adjacency matrix. We show that our approach surpasses all existing methods for zero-shot unsupervised segmentation, achieving state-of-the-art results on COCO-Stuff-27 and Cityscapes.
Abstract:Accurately detecting and classifying damage in analogue media such as paintings, photographs, textiles, mosaics, and frescoes is essential for cultural heritage preservation. While machine learning models excel in correcting degradation if the damage operator is known a priori, we show that they fail to robustly predict where the damage is even after supervised training; thus, reliable damage detection remains a challenge. Motivated by this, we introduce ARTeFACT, a dataset for damage detection in diverse types analogue media, with over 11,000 annotations covering 15 kinds of damage across various subjects, media, and historical provenance. Furthermore, we contribute human-verified text prompts describing the semantic contents of the images, and derive additional textual descriptions of the annotated damage. We evaluate CNN, Transformer, diffusion-based segmentation models, and foundation vision models in zero-shot, supervised, unsupervised and text-guided settings, revealing their limitations in generalising across media types. Our dataset is available at $\href{https://daniela997.github.io/ARTeFACT/}{https://daniela997.github.io/ARTeFACT/}$ as the first-of-its-kind benchmark for analogue media damage detection and restoration.
Abstract:Human motion analysis offers significant potential for healthcare monitoring and early detection of diseases. The advent of radar-based sensing systems has captured the spotlight for they are able to operate without physical contact and they can integrate with pre-existing Wi-Fi networks. They are also seen as less privacy-invasive compared to camera-based systems. However, recent research has shown high accuracy in recognizing subjects or gender from radar gait patterns, raising privacy concerns. This study addresses these issues by investigating privacy vulnerabilities in radar-based Human Activity Recognition (HAR) systems and proposing a novel method for privacy preservation using Differential Privacy (DP) driven by attributions derived with Integrated Decision Gradient (IDG) algorithm. We investigate Black-box Membership Inference Attack (MIA) Models in HAR settings across various levels of attacker-accessible information. We extensively evaluated the effectiveness of the proposed IDG-DP method by designing a CNN-based HAR model and rigorously assessing its resilience against MIAs. Experimental results demonstrate the potential of IDG-DP in mitigating privacy attacks while maintaining utility across all settings, particularly excelling against label-only and shadow model black-box MIA attacks. This work represents a crucial step towards balancing the need for effective radar-based HAR with robust privacy protection in healthcare environments.
Abstract:We present Flat'n'Fold, a novel large-scale dataset for garment manipulation that addresses critical gaps in existing datasets. Comprising 1,212 human and 887 robot demonstrations of flattening and folding 44 unique garments across 8 categories, Flat'n'Fold surpasses prior datasets in size, scope, and diversity. Our dataset uniquely captures the entire manipulation process from crumpled to folded states, providing synchronized multi-view RGB-D images, point clouds, and action data, including hand or gripper positions and rotations. We quantify the dataset's diversity and complexity compared to existing benchmarks and show that our dataset features natural and diverse manipulations of real-world demonstrations of human and robot demonstrations in terms of visual and action information. To showcase Flat'n'Fold's utility, we establish new benchmarks for grasping point prediction and subtask decomposition. Our evaluation of state-of-the-art models on these tasks reveals significant room for improvement. This underscores Flat'n'Fold's potential to drive advances in robotic perception and manipulation of deformable objects. Our dataset can be downloaded at https://cvas-ug.github.io/flat-n-fold
Abstract:Semi-supervised medical image segmentation has shown promise in training models with limited labeled data and abundant unlabeled data. However, state-of-the-art methods ignore a potentially valuable source of unsupervised semantic information -- spatial registration transforms between image volumes. To address this, we propose CCT-R, a contrastive cross-teaching framework incorporating registration information. To leverage the semantic information available in registrations between volume pairs, CCT-R incorporates two proposed modules: Registration Supervision Loss (RSL) and Registration-Enhanced Positive Sampling (REPS). The RSL leverages segmentation knowledge derived from transforms between labeled and unlabeled volume pairs, providing an additional source of pseudo-labels. REPS enhances contrastive learning by identifying anatomically-corresponding positives across volumes using registration transforms. Experimental results on two challenging medical segmentation benchmarks demonstrate the effectiveness and superiority of CCT-R across various semi-supervised settings, with as few as one labeled case. Our code is available at https://github.com/kathyliu579/ContrastiveCross-teachingWithRegistration.
Abstract:Accurately detecting and classifying damage in analogue media such as paintings, photographs, textiles, mosaics, and frescoes is essential for cultural heritage preservation. While machine learning models excel in correcting global degradation if the damage operator is known a priori, we show that they fail to predict where the damage is even after supervised training; thus, reliable damage detection remains a challenge. We introduce DamBench, a dataset for damage detection in diverse analogue media, with over 11,000 annotations covering 15 damage types across various subjects and media. We evaluate CNN, Transformer, and text-guided diffusion segmentation models, revealing their limitations in generalising across media types.