Abstract:Cameras are essential vision instruments to capture images for pattern detection and measurement. Human-object interaction (HOI) detection is one of the most popular pattern detection approaches for captured human-centric visual scenes. Recently, Transformer-based models have become the dominant approach for HOI detection due to their advanced network architectures and thus promising results. However, most of them follow the one-stage design of vanilla Transformer, leaving rich geometric priors under-exploited and leading to compromised performance especially when occlusion occurs. Given that geometric features tend to outperform visual ones in occluded scenarios and offer information that complements visual cues, we propose a novel end-to-end Transformer-style HOI detection model, i.e., geometric features enhanced HOI detector (GeoHOI). One key part of the model is a new unified self-supervised keypoint learning method named UniPointNet that bridges the gap of consistent keypoint representation across diverse object categories, including humans. GeoHOI effectively upgrades a Transformer-based HOI detector benefiting from the keypoints similarities measuring the likelihood of human-object interactions as well as local keypoint patches to enhance interaction query representation, so as to boost HOI predictions. Extensive experiments show that the proposed method outperforms the state-of-the-art models on V-COCO and achieves competitive performance on HICO-DET. Case study results on the post-disaster rescue with vision-based instruments showcase the applicability of the proposed GeoHOI in real-world applications.
Abstract:Close and continuous interaction with rich contacts is a crucial aspect of human activities (e.g. hugging, dancing) and of interest in many domains like activity recognition, motion prediction, character animation, etc. However, acquiring such skeletal motion is challenging. While direct motion capture is expensive and slow, motion editing/generation is also non-trivial, as complex contact patterns with topological and geometric constraints have to be retained. To this end, we propose a new deep learning method for two-body skeletal interaction motion augmentation, which can generate variations of contact-rich interactions with varying body sizes and proportions while retaining the key geometric/topological relations between two bodies. Our system can learn effectively from a relatively small amount of data and generalize to drastically different skeleton sizes. Through exhaustive evaluation and comparison, we show it can generate high-quality motions, has strong generalizability and outperforms traditional optimization-based methods and alternative deep learning solutions.
Abstract:Purpose:Current methods for diagnosis of PD rely on clinical examination. The accuracy of diagnosis ranges between 73% and 84%, and is influenced by the experience of the clinical assessor. Hence, an automatic, effective and interpretable supporting system for PD symptom identification would support clinicians in making more robust PD diagnostic decisions. Methods: We propose to analyze Parkinson's tremor (PT) to support the analysis of PD, since PT is one of the most typical symptoms of PD with broad generalizability. To realize the idea, we present SPA-PTA, a deep learning-based PT classification and severity estimation system that takes consumer-grade videos of front-facing humans as input. The core of the system is a novel attention module with a lightweight pyramidal channel-squeezing-fusion architecture that effectively extracts relevant PT information and filters noise. It enhances modeling performance while improving system interpretability. Results:We validate our system via individual-based leave-one-out cross-validation on two tasks: the PT classification task and the tremor severity rating estimation task. Our system presents a 91.3% accuracy and 80.0% F1-score in classifying PT with non-PT class, while providing a 76.4% accuracy and 76.7% F1-score in more complex multiclass tremor rating classification task. Conclusion: Our system offers a cost-effective PT classification and tremor severity estimation results as warning signs of PD for undiagnosed patients with PT symptoms. In addition, it provides a potential solution for supporting PD diagnosis in regions with limited clinical resources.
Abstract:Interaction-aware Autonomous Driving (IAAD) is a rapidly growing field of research that focuses on the development of autonomous vehicles (AVs) that are capable of interacting safely and efficiently with human road users. This is a challenging task, as it requires the autonomous vehicle to be able to understand and predict the behaviour of human road users. In this literature review, the current state of IAAD research is surveyed in this work. Commencing with an examination of terminology, attention is drawn to challenges and existing models employed for modelling the behaviour of drivers and pedestrians. Next, a comprehensive review is conducted on various techniques proposed for interaction modelling, encompassing cognitive methods, machine learning approaches, and game-theoretic methods. The conclusion is reached through a discussion of potential advantages and risks associated with IAAD, along with the illumination of pivotal research inquiries necessitating future exploration.
Abstract:We present a software that predicts non-cleft facial images for patients with cleft lip, thereby facilitating the understanding, awareness and discussion of cleft lip surgeries. To protect patients privacy, we design a software framework using image inpainting, which does not require cleft lip images for training, thereby mitigating the risk of model leakage. We implement a novel multi-task architecture that predicts both the non-cleft facial image and facial landmarks, resulting in better performance as evaluated by surgeons. The software is implemented with PyTorch and is usable with consumer-level color images with a fast prediction speed, enabling effective deployment.
Abstract:Learning view-invariant representation is a key to improving feature discrimination power for skeleton-based action recognition. Existing approaches cannot effectively remove the impact of viewpoint due to the implicit view-dependent representations. In this work, we propose a self-supervised framework called Focalized Contrastive View-invariant Learning (FoCoViL), which significantly suppresses the view-specific information on the representation space where the viewpoints are coarsely aligned. By maximizing mutual information with an effective contrastive loss between multi-view sample pairs, FoCoViL associates actions with common view-invariant properties and simultaneously separates the dissimilar ones. We further propose an adaptive focalization method based on pairwise similarity to enhance contrastive learning for a clearer cluster boundary in the learned space. Different from many existing self-supervised representation learning work that rely heavily on supervised classifiers, FoCoViL performs well on both unsupervised and supervised classifiers with superior recognition performance. Extensive experiments also show that the proposed contrastive-based focalization generates a more discriminative latent representation.
Abstract:Early prediction is clinically considered one of the essential parts of cerebral palsy (CP) treatment. We propose to implement a low-cost and interpretable classification system for supporting CP prediction based on General Movement Assessment (GMA). We design a Pytorch-based attention-informed graph convolutional network to early identify infants at risk of CP from skeletal data extracted from RGB videos. We also design a frequency-binning module for learning the CP movements in the frequency domain while filtering noise. Our system only requires consumer-grade RGB videos for training to support interactive-time CP prediction by providing an interpretable CP classification result.
Abstract:Musculoskeletal and neurological disorders are the most common causes of walking problems among older people, and they often lead to diminished quality of life. Analyzing walking motion data manually requires trained professionals and the evaluations may not always be objective. To facilitate early diagnosis, recent deep learning-based methods have shown promising results for automated analysis, which can discover patterns that have not been found in traditional machine learning methods. We observe that existing work mostly applies deep learning on individual joint features such as the time series of joint positions. Due to the challenge of discovering inter-joint features such as the distance between feet (i.e. the stride width) from generally smaller-scale medical datasets, these methods usually perform sub-optimally. As a result, we propose a solution that explicitly takes both individual joint features and inter-joint features as input, relieving the system from the need of discovering more complicated features from small data. Due to the distinctive nature of the two types of features, we introduce a two-stream framework, with one stream learning from the time series of joint position and the other from the time series of relative joint displacement. We further develop a mid-layer fusion module to combine the discovered patterns in these two streams for diagnosis, which results in a complementary representation of the data for better prediction performance. We validate our system with a benchmark dataset of 3D skeleton motion that involves 45 patients with musculoskeletal and neurological disorders, and achieve a prediction accuracy of 95.56%, outperforming state-of-the-art methods.
Abstract:Synthesizing multi-character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating multi-character interactions focuses on generating a single type of reactive motion for a given sequence which results in a lack of variety of the resultant motions. In this paper, we propose a novel way to create realistic human reactive motions which are not presented in the given dataset by mixing and matching different types of close interactions. We propose a Conditional Hierarchical Generative Adversarial Network with Multi-Hot Class Embedding to generate the Mix and Match reactive motions of the follower from a given motion sequence of the leader. Experiments are conducted on both noisy (depth-based) and high-quality (MoCap-based) interaction datasets. The quantitative and qualitative results show that our approach outperforms the state-of-the-art methods on the given datasets. We also provide an augmented dataset with realistic reactive motions to stimulate future research in this area. The code is available at https://github.com/Aman-Goel1/IMM
Abstract:A Cleft lip is a congenital abnormality requiring surgical repair by a specialist. The surgeon must have extensive experience and theoretical knowledge to perform surgery, and Artificial Intelligence (AI) method has been proposed to guide surgeons in improving surgical outcomes. If AI can be used to predict what a repaired cleft lip would look like, surgeons could use it as an adjunct to adjust their surgical technique and improve results. To explore the feasibility of this idea while protecting patient privacy, we propose a deep learning-based image inpainting method that is capable of covering a cleft lip and generating a lip and nose without a cleft. Our experiments are conducted on two real-world cleft lip datasets and are assessed by expert cleft lip surgeons to demonstrate the feasibility of the proposed method.