Abstract:Action Quality Assessment (AQA) quantitatively evaluates the quality of human actions, providing automated assessments that reduce biases in human judgment. Its applications span domains such as sports analysis, skill assessment, and medical care. Recent advances in AQA have introduced innovative methodologies, but similar methods often intertwine across different domains, highlighting the fragmented nature that hinders systematic reviews. In addition, the lack of a unified benchmark and limited computational comparisons hinder consistent evaluation and fair assessment of AQA approaches. In this work, we address these gaps by systematically analyzing over 150 AQA-related papers to develop a hierarchical taxonomy, construct a unified benchmark, and provide an in-depth analysis of current trends, challenges, and future directions. Our hierarchical taxonomy categorizes AQA methods based on input modalities (video, skeleton, multi-modal) and their specific characteristics, highlighting the evolution and interrelations across various approaches. To promote standardization, we present a unified benchmark, integrating diverse datasets to evaluate the assessment precision and computational efficiency. Finally, we review emerging task-specific applications and identify under-explored challenges in AQA, providing actionable insights into future research directions. This survey aims to deepen understanding of AQA progress, facilitate method comparison, and guide future innovations. The project web page can be found at https://ZhouKanglei.github.io/AQA-Survey.
Abstract:Surgical workflow anticipation is the task of predicting the timing of relevant surgical events from live video data, which is critical in Robotic-Assisted Surgery (RAS). Accurate predictions require the use of spatial information to model surgical interactions. However, current methods focus solely on surgical instruments, assume static interactions between instruments, and only anticipate surgical events within a fixed time horizon. To address these challenges, we propose an adaptive graph learning framework for surgical workflow anticipation based on a novel spatial representation, featuring three key innovations. First, we introduce a new representation of spatial information based on bounding boxes of surgical instruments and targets, including their detection confidence levels. These are trained on additional annotations we provide for two benchmark datasets. Second, we design an adaptive graph learning method to capture dynamic interactions. Third, we develop a multi-horizon objective that balances learning objectives for different time horizons, allowing for unconstrained predictions. Evaluations on two benchmarks reveal superior performance in short-to-mid-term anticipation, with an error reduction of approximately 3% for surgical phase anticipation and 9% for remaining surgical duration anticipation. These performance improvements demonstrate the effectiveness of our method and highlight its potential for enhancing preparation and coordination within the RAS team. This can improve surgical safety and the efficiency of operating room usage.
Abstract:Artificial Intelligence significantly enhances the visual art industry by analyzing, identifying and generating digitized artistic images. This review highlights the substantial benefits of integrating geometric data into AI models, addressing challenges such as high inter-class variations, domain gaps, and the separation of style from content by incorporating geometric information. Models not only improve AI-generated graphics synthesis quality, but also effectively distinguish between style and content, utilizing inherent model biases and shared data traits. We explore methods like geometric data extraction from artistic images, the impact on human perception, and its use in discriminative tasks. The review also discusses the potential for improving data quality through innovative annotation techniques and the use of geometric data to enhance model adaptability and output refinement. Overall, incorporating geometric guidance boosts model performance in classification and synthesis tasks, providing crucial insights for future AI applications in the visual arts domain.
Abstract:Image inpainting aims to repair a partially damaged image based on the information from known regions of the images. \revise{Achieving semantically plausible inpainting results is particularly challenging because it requires the reconstructed regions to exhibit similar patterns to the semanticly consistent regions}. This requires a model with a strong capacity to capture long-range dependencies. Existing models struggle in this regard due to the slow growth of receptive field for Convolutional Neural Networks (CNNs) based methods and patch-level interactions in Transformer-based methods, which are ineffective for capturing long-range dependencies. Motivated by this, we propose SEM-Net, a novel visual State Space model (SSM) vision network, modelling corrupted images at the pixel level while capturing long-range dependencies (LRDs) in state space, achieving a linear computational complexity. To address the inherent lack of spatial awareness in SSM, we introduce the Snake Mamba Block (SMB) and Spatially-Enhanced Feedforward Network. These innovations enable SEM-Net to outperform state-of-the-art inpainting methods on two distinct datasets, showing significant improvements in capturing LRDs and enhancement in spatial consistency. Additionally, SEM-Net achieves state-of-the-art performance on motion deblurring, demonstrating its generalizability. Our source code will be released in https://github.com/ChrisChen1023/SEM-Net.
Abstract:To improve storage and transmission, images are generally compressed. Vector quantization (VQ) is a popular compression method as it has a high compression ratio that suppresses other compression techniques. Despite this, existing adversarial attack methods on image classification are mostly performed in the pixel domain with few exceptions in the compressed domain, making them less applicable in real-world scenarios. In this paper, we propose a novel one-index attack method in the VQ domain to generate adversarial images by a differential evolution algorithm, successfully resulting in image misclassification in victim models. The one-index attack method modifies a single index in the compressed data stream so that the decompressed image is misclassified. It only needs to modify a single VQ index to realize an attack, which limits the number of perturbed indexes. The proposed method belongs to a semi-black-box attack, which is more in line with the actual attack scenario. We apply our method to attack three popular image classification models, i.e., Resnet, NIN, and VGG16. On average, 55.9% and 77.4% of the images in CIFAR-10 and Fashion MNIST, respectively, are successfully attacked, with a high level of misclassification confidence and a low level of image perturbation.
Abstract:3D point clouds are essential for perceiving outdoor scenes, especially within the realm of autonomous driving. Recent advances in 3D LiDAR Object Detection focus primarily on the spatial positioning and distribution of points to ensure accurate detection. However, despite their robust performance in variable conditions, these methods are hindered by their sole reliance on coordinates and point intensity, resulting in inadequate isometric invariance and suboptimal detection outcomes. To tackle this challenge, our work introduces Transformation-Invariant Local (TraIL) features and the associated TraIL-Det architecture. Our TraIL features exhibit rigid transformation invariance and effectively adapt to variations in point density, with a design focus on capturing the localized geometry of neighboring structures. They utilize the inherent isotropic radiation of LiDAR to enhance local representation, improve computational efficiency, and boost detection performance. To effectively process the geometric relations among points within each proposal, we propose a Multi-head self-Attention Encoder (MAE) with asymmetric geometric features to encode high-dimensional TraIL features into manageable representations. Our method outperforms contemporary self-supervised 3D object detection approaches in terms of mAP on KITTI (67.8, 20% label, moderate) and Waymo (68.9, 20% label, moderate) datasets under various label ratios (20%, 50%, and 100%).
Abstract:Painting classification plays a vital role in organizing, finding, and suggesting artwork for digital and classic art galleries. Existing methods struggle with adapting knowledge from the real world to artistic images during training, leading to poor performance when dealing with different datasets. Our innovation lies in addressing these challenges through a two-step process. First, we generate more data using Style Transfer with Adaptive Instance Normalization (AdaIN), bridging the gap between diverse styles. Then, our classifier gains a boost with feature-map adaptive spatial attention modules, improving its understanding of artistic details. Moreover, we tackle the problem of imbalanced class representation by dynamically adjusting augmented samples. Through a dual-stage process involving careful hyperparameter search and model fine-tuning, we achieve an impressive 87.24\% accuracy using the ResNet-50 backbone over 40 training epochs. Our study explores quantitative analyses that compare different pretrained backbones, investigates model optimization through ablation studies, and examines how varying augmentation levels affect model performance. Complementing this, our qualitative experiments offer valuable insights into the model's decision-making process using spatial attention and its ability to differentiate between easy and challenging samples based on confidence ranking.
Abstract:Image inpainting, or image completion, is a crucial task in computer vision that aims to restore missing or damaged regions of images with semantically coherent content. This technique requires a precise balance of local texture replication and global contextual understanding to ensure the restored image integrates seamlessly with its surroundings. Traditional methods using Convolutional Neural Networks (CNNs) are effective at capturing local patterns but often struggle with broader contextual relationships due to the limited receptive fields. Recent advancements have incorporated transformers, leveraging their ability to understand global interactions. However, these methods face computational inefficiencies and struggle to maintain fine-grained details. To overcome these challenges, we introduce MxT composed of the proposed Hybrid Module (HM), which combines Mamba with the transformer in a synergistic manner. Mamba is adept at efficiently processing long sequences with linear computational costs, making it an ideal complement to the transformer for handling long-scale data interactions. Our HM facilitates dual-level interaction learning at both pixel and patch levels, greatly enhancing the model to reconstruct images with high quality and contextual accuracy. We evaluate MxT on the widely-used CelebA-HQ and Places2-standard datasets, where it consistently outperformed existing state-of-the-art methods.
Abstract:3D point clouds play a pivotal role in outdoor scene perception, especially in the context of autonomous driving. Recent advancements in 3D LiDAR segmentation often focus intensely on the spatial positioning and distribution of points for accurate segmentation. However, these methods, while robust in variable conditions, encounter challenges due to sole reliance on coordinates and point intensity, leading to poor isometric invariance and suboptimal segmentation. To tackle this challenge, our work introduces Range-Aware Pointwise Distance Distribution (RAPiD) features and the associated RAPiD-Seg architecture. Our RAPiD features exhibit rigid transformation invariance and effectively adapt to variations in point density, with a design focus on capturing the localized geometry of neighboring structures. They utilize inherent LiDAR isotropic radiation and semantic categorization for enhanced local representation and computational efficiency, while incorporating a 4D distance metric that integrates geometric and surface material reflectivity for improved semantic segmentation. To effectively embed high-dimensional RAPiD features, we propose a double-nested autoencoder structure with a novel class-aware embedding objective to encode high-dimensional features into manageable voxel-wise embeddings. Additionally, we propose RAPiD-Seg which incorporates a channel-wise attention fusion and two effective RAPiD-Seg variants, further optimizing the embedding for enhanced performance and generalization. Our method outperforms contemporary LiDAR segmentation work in terms of mIoU on SemanticKITTI (76.1) and nuScenes (83.6) datasets.
Abstract:Video inpainting fills in corrupted video content with plausible replacements. While recent advances in endoscopic video inpainting have shown potential for enhancing the quality of endoscopic videos, they mainly repair 2D visual information without effectively preserving crucial 3D spatial details for clinical reference. Depth-aware inpainting methods attempt to preserve these details by incorporating depth information. Still, in endoscopic contexts, they face challenges including reliance on pre-acquired depth maps, less effective fusion designs, and ignorance of the fidelity of 3D spatial details. To address them, we introduce a novel Depth-aware Endoscopic Video Inpainting (DAEVI) framework. It features a Spatial-Temporal Guided Depth Estimation module for direct depth estimation from visual features, a Bi-Modal Paired Channel Fusion module for effective channel-by-channel fusion of visual and depth information, and a Depth Enhanced Discriminator to assess the fidelity of the RGB-D sequence comprised of the inpainted frames and estimated depth images. Experimental evaluations on established benchmarks demonstrate our framework's superiority, achieving a 2% improvement in PSNR and a 6% reduction in MSE compared to state-of-the-art methods. Qualitative analyses further validate its enhanced ability to inpaint fine details, highlighting the benefits of integrating depth information into endoscopic inpainting.