Abstract:As artificial intelligence (AI) becomes increasingly embedded in healthcare delivery, this chapter explores the critical aspects of developing reliable and ethical Clinical Decision Support Systems (CDSS). Beginning with the fundamental transition from traditional statistical models to sophisticated machine learning approaches, this work examines rigorous validation strategies and performance assessment methods, including the crucial role of model calibration and decision curve analysis. The chapter emphasizes that creating trustworthy AI systems in healthcare requires more than just technical accuracy; it demands careful consideration of fairness, explainability, and privacy. The challenge of ensuring equitable healthcare delivery through AI is stressed, discussing methods to identify and mitigate bias in clinical predictive models. The chapter then delves into explainability as a cornerstone of human-centered CDSS. This focus reflects the understanding that healthcare professionals must not only trust AI recommendations but also comprehend their underlying reasoning. The discussion advances in an analysis of privacy vulnerabilities in medical AI systems, from data leakage in deep learning models to sophisticated attacks against model explanations. The text explores privacy-preservation strategies such as differential privacy and federated learning, while acknowledging the inherent trade-offs between privacy protection and model performance. This progression, from technical validation to ethical considerations, reflects the multifaceted challenges of developing AI systems that can be seamlessly and reliably integrated into daily clinical practice while maintaining the highest standards of patient care and data protection.
Abstract:Human motion analysis offers significant potential for healthcare monitoring and early detection of diseases. The advent of radar-based sensing systems has captured the spotlight for they are able to operate without physical contact and they can integrate with pre-existing Wi-Fi networks. They are also seen as less privacy-invasive compared to camera-based systems. However, recent research has shown high accuracy in recognizing subjects or gender from radar gait patterns, raising privacy concerns. This study addresses these issues by investigating privacy vulnerabilities in radar-based Human Activity Recognition (HAR) systems and proposing a novel method for privacy preservation using Differential Privacy (DP) driven by attributions derived with Integrated Decision Gradient (IDG) algorithm. We investigate Black-box Membership Inference Attack (MIA) Models in HAR settings across various levels of attacker-accessible information. We extensively evaluated the effectiveness of the proposed IDG-DP method by designing a CNN-based HAR model and rigorously assessing its resilience against MIAs. Experimental results demonstrate the potential of IDG-DP in mitigating privacy attacks while maintaining utility across all settings, particularly excelling against label-only and shadow model black-box MIA attacks. This work represents a crucial step towards balancing the need for effective radar-based HAR with robust privacy protection in healthcare environments.
Abstract:Reducing the memory footprint of Machine Learning (ML) models, particularly Deep Neural Networks (DNNs), is essential to enable their deployment into resource-constrained tiny devices. However, a disadvantage of DNN models is their vulnerability to adversarial attacks, as they can be fooled by adding slight perturbations to the inputs. Therefore, the challenge is how to create accurate, robust, and tiny DNN models deployable on resource-constrained embedded devices. This paper reports the results of devising a tiny DNN model, robust to adversarial black and white box attacks, trained with an automatic quantizationaware training framework, i.e. QKeras, with deep quantization loss accounted in the learning loop, thereby making the designed DNNs more accurate for deployment on tiny devices. We investigated how QKeras and an adversarial robustness technique, Jacobian Regularization (JR), can provide a co-optimization strategy by exploiting the DNN topology and the per layer JR approach to produce robust yet tiny deeply quantized DNN models. As a result, a new DNN model implementing this cooptimization strategy was conceived, developed and tested on three datasets containing both images and audio inputs, as well as compared its performance with existing benchmarks against various white-box and black-box attacks. Experimental results demonstrated that on average our proposed DNN model resulted in 8.3% and 79.5% higher accuracy than MLCommons/Tiny benchmarks in the presence of white-box and black-box attacks on the CIFAR-10 image dataset and a subset of the Google Speech Commands audio dataset respectively. It was also 6.5% more accurate for black-box attacks on the SVHN image dataset.