Abstract:The pivotal shift from traditional paper-based records to sophisticated Electronic Health Records (EHR), enabled systematic collection and analysis of patient data through descriptive statistics, providing insight into patterns and trends across patient populations. This evolution continued toward predictive analytics, allowing healthcare providers to anticipate patient outcomes and potential complications before they occur. This progression from basic digital record-keeping to sophisticated predictive modelling and digital twins reflects healthcare's broader evolution toward more integrated, patient-centred approaches that combine data-driven insights with personalized care delivery. This chapter explores the evolution and significance of healthcare information systems, beginning with an examination of the implementation of EHR in the UK and the USA. It provides a comprehensive overview of the International Classification of Diseases (ICD) system, tracing its development from ICD-9 to ICD-10. Central to this discussion is the MIMIC-III database, a landmark achievement in healthcare data sharing and arguably the most comprehensive critical care database freely available to researchers worldwide. MIMIC-III has democratized access to high-quality healthcare data, enabling unprecedented opportunities for research and analysis. The chapter examines its structure, clinical outcome analysis capabilities, and practical applications through case studies, with a particular focus on mortality and length of stay metrics, vital signs extraction, and ICD coding. Through detailed entity-relationship diagrams and practical examples, the text illustrates MIMIC's complex data structure and demonstrates how different querying approaches can lead to subtly different results, emphasizing the critical importance of understanding the database's architecture for accurate data extraction.
Abstract:As artificial intelligence (AI) becomes increasingly embedded in healthcare delivery, this chapter explores the critical aspects of developing reliable and ethical Clinical Decision Support Systems (CDSS). Beginning with the fundamental transition from traditional statistical models to sophisticated machine learning approaches, this work examines rigorous validation strategies and performance assessment methods, including the crucial role of model calibration and decision curve analysis. The chapter emphasizes that creating trustworthy AI systems in healthcare requires more than just technical accuracy; it demands careful consideration of fairness, explainability, and privacy. The challenge of ensuring equitable healthcare delivery through AI is stressed, discussing methods to identify and mitigate bias in clinical predictive models. The chapter then delves into explainability as a cornerstone of human-centered CDSS. This focus reflects the understanding that healthcare professionals must not only trust AI recommendations but also comprehend their underlying reasoning. The discussion advances in an analysis of privacy vulnerabilities in medical AI systems, from data leakage in deep learning models to sophisticated attacks against model explanations. The text explores privacy-preservation strategies such as differential privacy and federated learning, while acknowledging the inherent trade-offs between privacy protection and model performance. This progression, from technical validation to ethical considerations, reflects the multifaceted challenges of developing AI systems that can be seamlessly and reliably integrated into daily clinical practice while maintaining the highest standards of patient care and data protection.