Abstract:The pivotal shift from traditional paper-based records to sophisticated Electronic Health Records (EHR), enabled systematic collection and analysis of patient data through descriptive statistics, providing insight into patterns and trends across patient populations. This evolution continued toward predictive analytics, allowing healthcare providers to anticipate patient outcomes and potential complications before they occur. This progression from basic digital record-keeping to sophisticated predictive modelling and digital twins reflects healthcare's broader evolution toward more integrated, patient-centred approaches that combine data-driven insights with personalized care delivery. This chapter explores the evolution and significance of healthcare information systems, beginning with an examination of the implementation of EHR in the UK and the USA. It provides a comprehensive overview of the International Classification of Diseases (ICD) system, tracing its development from ICD-9 to ICD-10. Central to this discussion is the MIMIC-III database, a landmark achievement in healthcare data sharing and arguably the most comprehensive critical care database freely available to researchers worldwide. MIMIC-III has democratized access to high-quality healthcare data, enabling unprecedented opportunities for research and analysis. The chapter examines its structure, clinical outcome analysis capabilities, and practical applications through case studies, with a particular focus on mortality and length of stay metrics, vital signs extraction, and ICD coding. Through detailed entity-relationship diagrams and practical examples, the text illustrates MIMIC's complex data structure and demonstrates how different querying approaches can lead to subtly different results, emphasizing the critical importance of understanding the database's architecture for accurate data extraction.
Abstract:Several disciplines, such as econometrics, neuroscience, and computational psychology, study the dynamic interactions between variables over time. A Bayesian nonparametric model known as the Wishart process has been shown to be effective in this situation, but its inference remains highly challenging. In this work, we introduce a Sequential Monte Carlo (SMC) sampler for the Wishart process, and show how it compares to conventional inference approaches, namely MCMC and variational inference. Using simulations we show that SMC sampling results in the most robust estimates and out-of-sample predictions of dynamic covariance. SMC especially outperforms the alternative approaches when using composite covariance functions with correlated parameters. We demonstrate the practical applicability of our proposed approach on a dataset of clinical depression (n=1), and show how using an accurate representation of the posterior distribution can be used to test for dynamics on covariance
Abstract:Clinical neuroimaging has recently witnessed explosive growth in data availability which brings studying heterogeneity in clinical cohorts to the spotlight. Normative modeling is an emerging statistical tool for achieving this objective. However, its application remains technically challenging due to difficulties in properly dealing with nuisance variation, for example due to variability in image acquisition devices. Here, in a fully probabilistic framework, we propose an application of hierarchical Bayesian regression (HBR) for multi-site normative modeling. Our experimental results confirm the superiority of HBR in deriving more accurate normative ranges on large multi-site neuroimaging data compared to widely used methods. This provides the possibility i) to learn the normative range of structural and functional brain measures on large multi-site data; ii) to recalibrate and reuse the learned model on local small data; therefore, HBR closes the technical loop for applying normative modeling as a medical tool for the diagnosis and prognosis of mental disorders.