Abstract:The pivotal shift from traditional paper-based records to sophisticated Electronic Health Records (EHR), enabled systematic collection and analysis of patient data through descriptive statistics, providing insight into patterns and trends across patient populations. This evolution continued toward predictive analytics, allowing healthcare providers to anticipate patient outcomes and potential complications before they occur. This progression from basic digital record-keeping to sophisticated predictive modelling and digital twins reflects healthcare's broader evolution toward more integrated, patient-centred approaches that combine data-driven insights with personalized care delivery. This chapter explores the evolution and significance of healthcare information systems, beginning with an examination of the implementation of EHR in the UK and the USA. It provides a comprehensive overview of the International Classification of Diseases (ICD) system, tracing its development from ICD-9 to ICD-10. Central to this discussion is the MIMIC-III database, a landmark achievement in healthcare data sharing and arguably the most comprehensive critical care database freely available to researchers worldwide. MIMIC-III has democratized access to high-quality healthcare data, enabling unprecedented opportunities for research and analysis. The chapter examines its structure, clinical outcome analysis capabilities, and practical applications through case studies, with a particular focus on mortality and length of stay metrics, vital signs extraction, and ICD coding. Through detailed entity-relationship diagrams and practical examples, the text illustrates MIMIC's complex data structure and demonstrates how different querying approaches can lead to subtly different results, emphasizing the critical importance of understanding the database's architecture for accurate data extraction.
Abstract:As artificial intelligence (AI) becomes increasingly embedded in healthcare delivery, this chapter explores the critical aspects of developing reliable and ethical Clinical Decision Support Systems (CDSS). Beginning with the fundamental transition from traditional statistical models to sophisticated machine learning approaches, this work examines rigorous validation strategies and performance assessment methods, including the crucial role of model calibration and decision curve analysis. The chapter emphasizes that creating trustworthy AI systems in healthcare requires more than just technical accuracy; it demands careful consideration of fairness, explainability, and privacy. The challenge of ensuring equitable healthcare delivery through AI is stressed, discussing methods to identify and mitigate bias in clinical predictive models. The chapter then delves into explainability as a cornerstone of human-centered CDSS. This focus reflects the understanding that healthcare professionals must not only trust AI recommendations but also comprehend their underlying reasoning. The discussion advances in an analysis of privacy vulnerabilities in medical AI systems, from data leakage in deep learning models to sophisticated attacks against model explanations. The text explores privacy-preservation strategies such as differential privacy and federated learning, while acknowledging the inherent trade-offs between privacy protection and model performance. This progression, from technical validation to ethical considerations, reflects the multifaceted challenges of developing AI systems that can be seamlessly and reliably integrated into daily clinical practice while maintaining the highest standards of patient care and data protection.
Abstract:Human motion analysis offers significant potential for healthcare monitoring and early detection of diseases. The advent of radar-based sensing systems has captured the spotlight for they are able to operate without physical contact and they can integrate with pre-existing Wi-Fi networks. They are also seen as less privacy-invasive compared to camera-based systems. However, recent research has shown high accuracy in recognizing subjects or gender from radar gait patterns, raising privacy concerns. This study addresses these issues by investigating privacy vulnerabilities in radar-based Human Activity Recognition (HAR) systems and proposing a novel method for privacy preservation using Differential Privacy (DP) driven by attributions derived with Integrated Decision Gradient (IDG) algorithm. We investigate Black-box Membership Inference Attack (MIA) Models in HAR settings across various levels of attacker-accessible information. We extensively evaluated the effectiveness of the proposed IDG-DP method by designing a CNN-based HAR model and rigorously assessing its resilience against MIAs. Experimental results demonstrate the potential of IDG-DP in mitigating privacy attacks while maintaining utility across all settings, particularly excelling against label-only and shadow model black-box MIA attacks. This work represents a crucial step towards balancing the need for effective radar-based HAR with robust privacy protection in healthcare environments.
Abstract:Semi-supervised medical image segmentation has shown promise in training models with limited labeled data and abundant unlabeled data. However, state-of-the-art methods ignore a potentially valuable source of unsupervised semantic information -- spatial registration transforms between image volumes. To address this, we propose CCT-R, a contrastive cross-teaching framework incorporating registration information. To leverage the semantic information available in registrations between volume pairs, CCT-R incorporates two proposed modules: Registration Supervision Loss (RSL) and Registration-Enhanced Positive Sampling (REPS). The RSL leverages segmentation knowledge derived from transforms between labeled and unlabeled volume pairs, providing an additional source of pseudo-labels. REPS enhances contrastive learning by identifying anatomically-corresponding positives across volumes using registration transforms. Experimental results on two challenging medical segmentation benchmarks demonstrate the effectiveness and superiority of CCT-R across various semi-supervised settings, with as few as one labeled case. Our code is available at https://github.com/kathyliu579/ContrastiveCross-teachingWithRegistration.
Abstract:We propose a novel transformer-style architecture called Global-Local Filter Network (GLFNet) for medical image segmentation and demonstrate its state-of-the-art performance. We replace the self-attention mechanism with a combination of global-local filter blocks to optimize model efficiency. The global filters extract features from the whole feature map whereas the local filters are being adaptively created as 4x4 patches of the same feature map and add restricted scale information. In particular, the feature extraction takes place in the frequency domain rather than the commonly used spatial (image) domain to facilitate faster computations. The fusion of information from both spatial and frequency spaces creates an efficient model with regards to complexity, required data and performance. We test GLFNet on three benchmark datasets achieving state-of-the-art performance on all of them while being almost twice as efficient in terms of GFLOP operations.
Abstract:Radiology reports are detailed text descriptions of the content of medical scans. Each report describes the presence/absence and location of relevant clinical findings, commonly including comparison with prior exams of the same patient to describe how they evolved. Radiology reporting is a time-consuming process, and scan results are often subject to delays. One strategy to speed up reporting is to integrate automated reporting systems, however clinical deployment requires high accuracy and interpretability. Previous approaches to automated radiology reporting generally do not provide the prior study as input, precluding comparison which is required for clinical accuracy in some types of scans, and offer only unreliable methods of interpretability. Therefore, leveraging an existing visual input format of anatomical tokens, we introduce two novel aspects: (1) longitudinal representation learning -- we input the prior scan as an additional input, proposing a method to align, concatenate and fuse the current and prior visual information into a joint longitudinal representation which can be provided to the multimodal report generation model; (2) sentence-anatomy dropout -- a training strategy for controllability in which the report generator model is trained to predict only sentences from the original report which correspond to the subset of anatomical regions given as input. We show through in-depth experiments on the MIMIC-CXR dataset how the proposed approach achieves state-of-the-art results while enabling anatomy-wise controllable report generation.
Abstract:The task of radiology reporting comprises describing and interpreting the medical findings in radiographic images, including description of their location and appearance. Automated approaches to radiology reporting require the image to be encoded into a suitable token representation for input to the language model. Previous methods commonly use convolutional neural networks to encode an image into a series of image-level feature map representations. However, the generated reports often exhibit realistic style but imperfect accuracy. Inspired by recent works for image captioning in the general domain in which each visual token corresponds to an object detected in an image, we investigate whether using local tokens corresponding to anatomical structures can improve the quality of the generated reports. We introduce a novel adaptation of Faster R-CNN in which finding detection is performed for the candidate bounding boxes extracted during anatomical structure localisation. We use the resulting bounding box feature representations as our set of finding-aware anatomical tokens. This encourages the extracted anatomical tokens to be informative about the findings they contain (required for the final task of radiology reporting). Evaluating on the MIMIC-CXR dataset of chest X-Ray images, we show that task-aware anatomical tokens give state-of-the-art performance when integrated into an automated reporting pipeline, yielding generated reports with improved clinical accuracy.
Abstract:Semi-supervised learning has demonstrated great potential in medical image segmentation by utilizing knowledge from unlabeled data. However, most existing approaches do not explicitly capture high-level semantic relations between distant regions, which limits their performance. In this paper, we focus on representation learning for semi-supervised learning, by developing a novel Multi-Scale Cross Supervised Contrastive Learning (MCSC) framework, to segment structures in medical images. We jointly train CNN and Transformer models, regularising their features to be semantically consistent across different scales. Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations that reflect intra- and inter-slice relationships across the whole dataset. To tackle class imbalance, we take into account the prevalence of each class to guide contrastive learning and ensure that features adequately capture infrequent classes. Extensive experiments on two multi-structure medical segmentation datasets demonstrate the effectiveness of MCSC. It not only outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice, but also greatly reduces the performance gap with fully supervised methods.
Abstract:Music therapy has emerged recently as a successful intervention that improves patient's outcome in a large range of neurological and mood disorders without adverse effects. Brain networks are entrained to music in ways that can be explained both via top-down and bottom-up processes. In particular, the direct interaction of auditory with the motor and the reward system via a predictive framework explains the efficacy of music-based interventions in motor rehabilitation. In this manuscript, we provide a brief overview of current theories of music perception and processing. Subsequently, we summarise evidence of music-based interventions primarily in motor, emotional and cardiovascular regulation. We highlight opportunities to improve quality of life and reduce stress beyond the clinic environment and in healthy individuals. This relatively unexplored area requires an understanding of how we can personalise and automate music selection processes to fit individuals needs and tasks via feedback loops mediated by measurements of neuro-physiological responses.
Abstract:The adaptation of transformers to computer vision is not straightforward because the modelling of image contextual information results in quadratic computational complexity with relation to the input features. Most of existing methods require extensive pre-training on massive datasets such as ImageNet and therefore their application to fields such as healthcare is less effective. CNNs are the dominant architecture in computer vision tasks because convolutional filters can effectively model local dependencies and reduce drastically the parameters required. However, convolutional filters cannot handle more complex interactions, which are beyond a small neighbour of pixels. Furthermore, their weights are fixed after training and thus they do not take into consideration changes in the visual input. Inspired by recent work on hybrid visual transformers with convolutions and hierarchical transformers, we propose Convolutional Swin-Unet (CS-Unet) transformer blocks and optimise their settings with relation to patch embedding, projection, the feed-forward network, up sampling and skip connections. CS-Unet can be trained from scratch and inherits the superiority of convolutions in each feature process phase. It helps to encode precise spatial information and produce hierarchical representations that contribute to object concepts at various scales. Experiments show that CS-Unet without pre-training surpasses other state-of-the-art counterparts by large margins on two medical CT and MRI datasets with fewer parameters. In addition, two domain-adaptation experiments on optic disc and polyp image segmentation further prove that our method is highly generalizable and effectively bridges the domain gap between images from different sources.