Renmin University of China
Abstract:Task decomposition is critical for understanding and learning complex long-horizon manipulation tasks. Especially for tasks involving rich physical interactions, relying solely on visual observations and robot proprioceptive information often fails to reveal the underlying event transitions. This raises the requirement for efficient collection of high-quality multi-modal data as well as robust segmentation method to decompose demonstrations into meaningful modules. Building on the idea of the handheld demonstration device Universal Manipulation Interface (UMI), we introduce TacUMI, a multi-modal data collection system that integrates additionally ViTac sensors, force-torque sensor, and pose tracker into a compact, robot-compatible gripper design, which enables synchronized acquisition of all these modalities during human demonstrations. We then propose a multi-modal segmentation framework that leverages temporal models to detect semantically meaningful event boundaries in sequential manipulations. Evaluation on a challenging cable mounting task shows more than 90 percent segmentation accuracy and highlights a remarkable improvement with more modalities, which validates that TacUMI establishes a practical foundation for both scalable collection and segmentation of multi-modal demonstrations in contact-rich tasks.
Abstract:Large Language Model (LLM) routers dynamically select optimal models for given inputs. Existing approaches typically assume access to ground-truth labeled data, which is often unavailable in practice, especially when user request distributions are heterogeneous and unknown. We introduce Routing with Generated Data (RGD), a challenging setting in which routers are trained exclusively on generated queries and answers produced from high-level task descriptions by generator LLMs. We evaluate query-answer routers (using both queries and labels) and query-only routers across four diverse benchmarks and 12 models, finding that query-answer routers degrade faster than query-only routers as generator quality decreases. Our analysis reveals two crucial characteristics of effective generators: they must accurately respond to their own questions, and their questions must produce sufficient performance differentiation among the model pool. We then show how filtering for these characteristics can improve the quality of generated data. We further propose CASCAL, a novel query-only router that estimates model correctness through consensus voting and identifies model-specific skill niches via hierarchical clustering. CASCAL is substantially more robust to generator quality, outperforming the best query-answer router by 4.6% absolute accuracy when trained on weak generator data.
Abstract:Zero-shot detection methods for AI-generated text typically aggregate token-level statistics across entire sequences, overlooking the temporal dynamics inherent to autoregressive generation. We analyze over 120k text samples and reveal Late-Stage Volatility Decay: AI-generated text exhibits rapidly stabilizing log probability fluctuations as generation progresses, while human writing maintains higher variability throughout. This divergence peaks in the second half of sequences, where AI-generated text shows 24--32\% lower volatility. Based on this finding, we propose two simple features: Derivative Dispersion and Local Volatility, which computed exclusively from late-stage statistics. Without perturbation sampling or additional model access, our method achieves state-of-the-art performance on EvoBench and MAGE benchmarks and demonstrates strong complementarity with existing global methods.
Abstract:Test-time scaling has enabled Large Language Models (LLMs) to tackle complex reasoning, yet the limitations of current Chain-of-Thought (CoT) evaluation obscures whether performance gains stem from genuine reasoning or mere verbosity. To address this, (1) we propose a novel neuro-symbolic framework for the non-intrusive, comprehensive process-centric evaluation of reasoning. (2) Through this lens, we identify four distinct behavioral prototypes and diagnose the failure modes. (3) We examine the impact of inference mode, training strategy, and model scale. Our analysis reveals that extended token generation is not a prerequisite for deep reasoning. Furthermore, we reveal critical constraints: mixing long and short CoT data in training risks in premature saturation and collapse, while distillation into smaller models captures behavioral length but fails to replicate logical efficacy due to intrinsic capacity limits.
Abstract:Large Language Models (LLMs) suffer severe catastrophic forgetting when adapted sequentially to new tasks in a continual learning (CL) setting. Existing approaches are fundamentally limited: replay-based methods are impractical and privacy-violating, while strict orthogonality-based methods collapse under scale: each new task is projected onto an orthogonal complement, progressively reducing the residual degrees of freedom and eliminating forward transfer by forbidding overlap in shared representations. In this work, we introduce ELLA, a training framework built on the principle of selective subspace de-correlation. Rather than forbidding all overlap, ELLA explicitly characterizes the structure of past updates and penalizes alignments along their high-energy, task-specific directions, while preserving freedom in the low-energy residual subspaces to enable transfer. Formally, this is realized via a lightweight regularizer on a single aggregated update matrix. We prove this mechanism corresponds to an anisotropic shrinkage operator that bounds interference, yielding a penalty that is both memory- and compute-constant regardless of task sequence length. ELLA requires no data replay, no architectural expansion, and negligible storage. Empirically, it achieves state-of-the-art CL performance on three popular benchmarks, with relative accuracy gains of up to $9.6\%$ and a $35\times$ smaller memory footprint. Further, ELLA scales robustly across architectures and actively enhances the model's zero-shot generalization performance on unseen tasks, establishing a principled and scalable solution for constructive lifelong LLM adaptation.
Abstract:Evaluating novelty is critical yet challenging in peer review, as reviewers must assess submissions against a vast, rapidly evolving literature. This report presents OpenNovelty, an LLM-powered agentic system for transparent, evidence-based novelty analysis. The system operates through four phases: (1) extracting the core task and contribution claims to generate retrieval queries; (2) retrieving relevant prior work based on extracted queries via semantic search engine; (3) constructing a hierarchical taxonomy of core-task-related work and performing contribution-level full-text comparisons against each contribution; and (4) synthesizing all analyses into a structured novelty report with explicit citations and evidence snippets. Unlike naive LLM-based approaches, \textsc{OpenNovelty} grounds all assessments in retrieved real papers, ensuring verifiable judgments. We deploy our system on 500+ ICLR 2026 submissions with all reports publicly available on our website, and preliminary analysis suggests it can identify relevant prior work, including closely related papers that authors may overlook. OpenNovelty aims to empower the research community with a scalable tool that promotes fair, consistent, and evidence-backed peer review.




Abstract:With the rapid development of Vision-Language Models (VLMs) and the growing demand for their applications, efficient compression of the image inputs has become increasingly important. Existing VLMs predominantly digest and understand high-bitrate compressed images, while their ability to interpret low-bitrate compressed images has yet to be explored by far. In this paper, we introduce the first comprehensive benchmark to evaluate the ability of VLM against compressed images, varying existing widely used image codecs and diverse set of tasks, encompassing over one million compressed images in our benchmark. Next, we analyse the source of performance gap, by categorising the gap from a) the information loss during compression and b) generalisation failure of VLM. We visualize these gaps with concrete examples and identify that for compressed images, only the generalization gap can be mitigated. Finally, we propose a universal VLM adaptor to enhance model performance on images compressed by existing codecs. Consequently, we demonstrate that a single adaptor can improve VLM performance across images with varying codecs and bitrates by 10%-30%. We believe that our benchmark and enhancement method provide valuable insights and contribute toward bridging the gap between VLMs and compressed images.
Abstract:Pinching antenna systems (PASS) have emerged as a technology that enables the large-scale movement of antenna elements, offering significant potential for performance gains in next-generation wireless networks. This paper investigates the problem of maximizing the average per-user data rate by optimizing the antenna placement of a multi-waveguide PASS, subject to a stringent physical minimum spacing constraint. To address this complex challenge, which involves a coupled fractional objective and a non-convex constraint, we employ the fractional programming (FP) framework to transform the non-convex rate maximization problem into a more tractable one, and devise a projected gradient ascent (PGA)-based algorithm to iteratively solve the transformed problem. Simulation results demonstrate that our proposed scheme significantly outperforms various geometric placement baselines, achieving superior per-user data rates by actively mitigating multi-user interference.




Abstract:As large language models (LLMs) are increasingly adopted for code vulnerability detection, their reliability and robustness across diverse vulnerability types have become a pressing concern. In traditional adversarial settings, code obfuscation has long been used as a general strategy to bypass auditing tools, preserving exploitability without tampering with the tools themselves. Numerous efforts have explored obfuscation methods and tools, yet their capabilities differ in terms of supported techniques, granularity, and programming languages, making it difficult to systematically assess their impact on LLM-based vulnerability detection. To address this gap, we provide a structured systematization of obfuscation techniques and evaluate them under a unified framework. Specifically, we categorize existing obfuscation methods into three major classes (layout, data flow, and control flow) covering 11 subcategories and 19 concrete techniques. We implement these techniques across four programming languages (Solidity, C, C++, and Python) using a consistent LLM-driven approach, and evaluate their effects on 15 LLMs spanning four model families (DeepSeek, OpenAI, Qwen, and LLaMA), as well as on two coding agents (GitHub Copilot and Codex). Our findings reveal both positive and negative impacts of code obfuscation on LLM-based vulnerability detection, highlighting conditions under which obfuscation leads to performance improvements or degradations. We further analyze these outcomes with respect to vulnerability characteristics, code properties, and model attributes. Finally, we outline several open problems and propose future directions to enhance the robustness of LLMs for real-world vulnerability detection.
Abstract:Echocardiography is the most widely used imaging modality in cardiology, yet its interpretation remains labor-intensive and inherently multimodal, requiring view recognition, quantitative measurements, qualitative assessments, and guideline-based reasoning. While recent vision-language models (VLMs) have achieved broad success in natural images and certain medical domains, their potential in echocardiography has been limited by the lack of large-scale, clinically grounded image-text datasets and the absence of measurement-based reasoning central to echo interpretation. We introduce EchoGround-MIMIC, the first measurement-grounded multimodal echocardiography dataset, comprising 19,065 image-text pairs from 1,572 patients with standardized views, structured measurements, measurement-grounded captions, and guideline-derived disease labels. Building on this resource, we propose EchoVLM, a vision-language model that incorporates two novel pretraining objectives: (i) a view-informed contrastive loss that encodes the view-dependent structure of echocardiographic imaging, and (ii) a negation-aware contrastive loss that distinguishes clinically critical negative from positive findings. Across five types of clinical applications with 36 tasks spanning multimodal disease classification, image-text retrieval, view classification, chamber segmentation, and landmark detection, EchoVLM achieves state-of-the-art performance (86.5% AUC in zero-shot disease classification and 95.1% accuracy in view classification). We demonstrate that clinically grounded multimodal pretraining yields transferable visual representations and establish EchoVLM as a foundation model for end-to-end echocardiography interpretation. We will release EchoGround-MIMIC and the data curation code, enabling reproducibility and further research in multimodal echocardiography interpretation.