Abstract:Large Language Models (LLMs) have transformed machine learning but raised significant legal concerns due to their potential to produce text that infringes on copyrights, resulting in several high-profile lawsuits. The legal landscape is struggling to keep pace with these rapid advancements, with ongoing debates about whether generated text might plagiarize copyrighted materials. Current LLMs may infringe on copyrights or overly restrict non-copyrighted texts, leading to these challenges: (i) the need for a comprehensive evaluation benchmark to assess copyright compliance from multiple aspects; (ii) evaluating robustness against safeguard bypassing attacks; and (iii) developing effective defenses targeted against the generation of copyrighted text. To tackle these challenges, we introduce a curated dataset to evaluate methods, test attack strategies, and propose lightweight, real-time defenses to prevent the generation of copyrighted text, ensuring the safe and lawful use of LLMs. Our experiments demonstrate that current LLMs frequently output copyrighted text, and that jailbreaking attacks can significantly increase the volume of copyrighted output. Our proposed defense mechanisms significantly reduce the volume of copyrighted text generated by LLMs by effectively refusing malicious requests. Code is publicly available at https://github.com/xz-liu/SHIELD
Abstract:The success of transformers in computer vision has led to several attempts to adapt them for mobile devices, but their performance remains unsatisfactory in some real-world applications. To address this issue, we propose PP-MobileSeg, a semantic segmentation model that achieves state-of-the-art performance on mobile devices. PP-MobileSeg comprises three novel parts: the StrideFormer backbone, the Aggregated Attention Module (AAM), and the Valid Interpolate Module (VIM). The four-stage StrideFormer backbone is built with MV3 blocks and strided SEA attention, and it is able to extract rich semantic and detailed features with minimal parameter overhead. The AAM first filters the detailed features through semantic feature ensemble voting and then combines them with semantic features to enhance the semantic information. Furthermore, we proposed VIM to upsample the downsampled feature to the resolution of the input image. It significantly reduces model latency by only interpolating classes present in the final prediction, which is the most significant contributor to overall model latency. Extensive experiments show that PP-MobileSeg achieves a superior tradeoff between accuracy, model size, and latency compared to other methods. On the ADE20K dataset, PP-MobileSeg achieves 1.57% higher accuracy in mIoU than SeaFormer-Base with 32.9% fewer parameters and 42.3% faster acceleration on Qualcomm Snapdragon 855. Source codes are available at https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.8.
Abstract:This report introduces the technical details of the team FuXi-Fresher for LVIS Challenge 2021. Our method focuses on the problem in following two aspects: the long-tail distribution and the segmentation quality of mask and boundary. Based on the advanced HTC instance segmentation algorithm, we connect transformer backbone(Swin-L) through composite connections inspired by CBNetv2 to enhance the baseline results. To alleviate the problem of long-tail distribution, we design a Distribution Balanced method which includes dataset balanced and loss function balaced modules. Further, we use a Mask and Boundary Refinement method composed with mask scoring and refine-mask algorithms to improve the segmentation quality. In addition, we are pleasantly surprised to find that early stopping combined with EMA method can achieve a great improvement. Finally, by using multi-scale testing and increasing the upper limit of the number of objects detected per image, we achieved more than 45.4% boundary AP on the val set of LVIS Challenge 2021. On the test data of LVIS Challenge 2021, we rank 1st and achieve 48.1% AP. Notably, our APr 47.5% is very closed to the APf 48.0%.
Abstract:Object detection is an essential technique for autonomous driving. The performance of an object detector significantly degrades if the weather of the training images is different from that of test images. Domain adaptation can be used to address the domain shift problem so as to improve the robustness of an object detector. However, most existing domain adaptation methods either handle single target domain or require domain labels. We propose a novel unsupervised domain classification method which can be used to generalize single-target domain adaptation methods to multi-target domains, and design a weather-invariant object detector training framework based on it. We conduct the experiments on Cityscapes dataset and its synthetic variants, i.e. foggy, rainy, and night. The experimental results show that the object detector trained by our proposed method realizes robust object detection under different weather conditions.
Abstract:Named Entity Recognition (NER) is a fundamental Natural Language Processing (NLP) task to extract entities from unstructured data. The previous methods for NER were based on machine learning or deep learning. Recently, pre-training models have significantly improved performance on multiple NLP tasks. In this paper, firstly, we introduce the architecture and pre-training tasks of four common pre-training models: BERT, ERNIE, ERNIE2.0-tiny, and RoBERTa. Then, we apply these pre-training models to a NER task by fine-tuning, and compare the effects of the different model architecture and pre-training tasks on the NER task. The experiment results showed that RoBERTa achieved state-of-the-art results on the MSRA-2006 dataset.
Abstract:Moving objects can greatly jeopardize the performance of a visual simultaneous localization and mapping (vSLAM) system which relies on the static-world assumption. Motion removal have seen successful on solving this problem. Two main streams of solutions are based on either geometry constraints or deep semantic segmentation neural network. The former rely on static majority assumption, and the latter require labor-intensive pixel-wise annotations. In this paper we propose to adopt a novel weakly-supervised semantic segmentation method. The segmentation mask is obtained from a CNN pre-trained with image-level class labels only. Thus, we leverage the power of deep semantic segmentation CNNs, while avoid requiring expensive annotations for training. We integrate our motion removal approach with the ORB-SLAM2 system. Experimental results on the TUM RGB-D and the KITTI stereo datasets demonstrate our superiority over the state-of-the-art.
Abstract:This paper proposes a novel weakly-supervised semantic segmentation method using image-level label only. The class-specific activation maps from the well-trained classifiers are used as cues to train a segmentation network. The well-known defects of these cues are coarseness and incompleteness. We use super-pixel to refine them, and fuse the cues extracted from both a color image trained classifier and a gray image trained classifier to compensate for their incompleteness. The conditional random field is adapted to regulate the training process and to refine the outputs further. Besides initializing the segmentation network, the previously trained classifier is also used in the testing phase to suppress the non-existing classes. Experimental results on the PASCAL VOC 2012 dataset illustrate the effectiveness of our method.
Abstract:Most of the face hallucination methods are designed for complete inputs. They will not work well if the inputs are very tiny or contaminated by large occlusion. Inspired by this fact, we propose an obscured face hallucination network(OFHNet). The OFHNet consists of four parts: an inpainting network, an upsampling network, a discriminative network, and a fixed facial landmark detection network. The inpainting network restores the low-resolution(LR) obscured face images. The following upsampling network is to upsample the output of inpainting network. In order to ensure the generated high-resolution(HR) face images more photo-realistic, we utilize the discriminative network and the facial landmark detection network to better the result of upsampling network. In addition, we present a semantic structure loss, which makes the generated HR face images more pleasing. Extensive experiments show that our framework can restore the appealing HR face images from 1/4 missing area LR face images with a challenging scaling factor of 8x.
Abstract:This paper presents a novel method to reduce the scale drift for indoor monocular simultaneous localization and mapping (SLAM). We leverage the prior knowledge that in the indoor environment, the line segments form tight clusters, e.g. many door frames in a straight corridor are of the same shape, size and orientation, so the same edges of these door frames form a tight line segment cluster. We implement our method in the popular ORB-SLAM2, which also serves as our baseline. In the front end we detect the line segments in each frame and incrementally cluster them in the 3D space. In the back end, we optimize the map imposing the constraint that the line segments of the same cluster should be the same. Experimental results show that our proposed method successfully reduces the scale drift for indoor monocular SLAM.
Abstract:This paper proposes a novel point-cloud-based place recognition system that adopts a deep learning approach for feature extraction. By using a convolutional neural network pre-trained on color images to extract features from a range image without fine-tuning on extra range images, significant improvement has been observed when compared to using hand-crafted features. The resulting system is illumination invariant, rotation invariant and robust against moving objects that are unrelated to the place identity. Apart from the system itself, we also bring to the community a new place recognition dataset containing both point cloud and grayscale images covering a full $360^\circ$ environmental view. In addition, the dataset is organized in such a way that it facilitates experimental validation with respect to rotation invariance or robustness against unrelated moving objects separately.