Beijing Institute of Technology, China
Abstract:Large Multimodal Models (LMMs) have demonstrated impressive capabilities in video reasoning via Chain-of-Thought (CoT). However, the robustness of their reasoning chains remains questionable. In this paper, we identify a critical failure mode termed textual inertia, where once a textual hallucination occurs in the thinking process, models tend to blindly adhere to the erroneous text while neglecting conflicting visual evidence. To systematically investigate this, we propose the LogicGraph Perturbation Protocol that structurally injects perturbations into the reasoning chains of diverse LMMs spanning both native reasoning architectures and prompt-driven paradigms to evaluate their self-reflection capabilities. The results reveal that models successfully self-correct in less than 10% of cases and predominantly succumb to blind textual error propagation. To mitigate this, we introduce Active Visual-Context Refinement, a training-free inference paradigm which orchestrates an active visual re-grounding mechanism to enforce fine-grained verification coupled with an adaptive context refinement strategy to summarize and denoise the reasoning history. Experiments demonstrate that our approach significantly stifles hallucination propagation and enhances reasoning robustness.
Abstract:Memory serves as the pivotal nexus bridging past and future, providing both humans and AI systems with invaluable concepts and experience to navigate complex tasks. Recent research on autonomous agents has increasingly focused on designing efficient memory workflows by drawing on cognitive neuroscience. However, constrained by interdisciplinary barriers, existing works struggle to assimilate the essence of human memory mechanisms. To bridge this gap, we systematically synthesizes interdisciplinary knowledge of memory, connecting insights from cognitive neuroscience with LLM-driven agents. Specifically, we first elucidate the definition and function of memory along a progressive trajectory from cognitive neuroscience through LLMs to agents. We then provide a comparative analysis of memory taxonomy, storage mechanisms, and the complete management lifecycle from both biological and artificial perspectives. Subsequently, we review the mainstream benchmarks for evaluating agent memory. Additionally, we explore memory security from dual perspectives of attack and defense. Finally, we envision future research directions, with a focus on multimodal memory systems and skill acquisition.
Abstract:Reliable, drift-free global localization presents significant challenges yet remains crucial for autonomous navigation in large-scale dynamic environments. In this paper, we introduce a tightly-coupled Semantic-LiDAR-Inertial-Wheel Odometry fusion framework, which is specifically designed to provide high-precision state estimation and robust localization in large-scale dynamic environments. Our framework leverages an efficient semantic-voxel map representation and employs an improved scan matching algorithm, which utilizes global semantic information to significantly reduce long-term trajectory drift. Furthermore, it seamlessly fuses data from LiDAR, IMU, and wheel odometry using a tightly-coupled multi-sensor fusion Iterative Error-State Kalman Filter (iESKF). This ensures reliable localization without experiencing abnormal drift. Moreover, to tackle the challenges posed by terrain variations and dynamic movements, we introduce a 3D adaptive scaling strategy that allows for flexible adjustments to wheel odometry measurement weights, thereby enhancing localization precision. This study presents extensive real-world experiments conducted in a one-million-square-meter automated port, encompassing 3,575 hours of operational data from 35 Intelligent Guided Vehicles (IGVs). The results consistently demonstrate that our system outperforms state-of-the-art LiDAR-based localization methods in large-scale dynamic environments, highlighting the framework's reliability and practical value.




Abstract:Recent advancements in image quality assessment (IQA), driven by sophisticated deep neural network designs, have significantly improved the ability to approach human perceptions. However, most existing methods are obsessed with fitting the overall score, neglecting the fact that humans typically evaluate image quality from different dimensions before arriving at an overall quality assessment. To overcome this problem, we propose a multi-dimensional image quality assessment (MDIQA) framework. Specifically, we model image quality across various perceptual dimensions, including five technical and four aesthetic dimensions, to capture the multifaceted nature of human visual perception within distinct branches. Each branch of our MDIQA is initially trained under the guidance of a separate dimension, and the respective features are then amalgamated to generate the final IQA score. Additionally, when the MDIQA model is ready, we can deploy it for a flexible training of image restoration (IR) models, enabling the restoration results to better align with varying user preferences through the adjustment of perceptual dimension weights. Extensive experiments demonstrate that our MDIQA achieves superior performance and can be effectively and flexibly applied to image restoration tasks. The code is available: https://github.com/YaoShunyu19/MDIQA.
Abstract:As Large Language Models (LLMs) are increasingly popularized in the multilingual world, ensuring hallucination-free factuality becomes markedly crucial. However, existing benchmarks for evaluating the reliability of Multimodal Large Language Models (MLLMs) predominantly focus on textual or visual modalities with a primary emphasis on English, which creates a gap in evaluation when processing multilingual input, especially in speech. To bridge this gap, we propose a novel \textbf{C}ross-lingual and \textbf{C}ross-modal \textbf{F}actuality benchmark (\textbf{CCFQA}). Specifically, the CCFQA benchmark contains parallel speech-text factual questions across 8 languages, designed to systematically evaluate MLLMs' cross-lingual and cross-modal factuality capabilities. Our experimental results demonstrate that current MLLMs still face substantial challenges on the CCFQA benchmark. Furthermore, we propose a few-shot transfer learning strategy that effectively transfers the Question Answering (QA) capabilities of LLMs in English to multilingual Spoken Question Answering (SQA) tasks, achieving competitive performance with GPT-4o-mini-Audio using just 5-shot training. We release CCFQA as a foundational research resource to promote the development of MLLMs with more robust and reliable speech understanding capabilities. Our code and dataset are available at https://github.com/yxduir/ccfqa.
Abstract:LiDAR-based localization serves as a critical component in autonomous systems, yet existing approaches face persistent challenges in balancing repeatability, accuracy, and environmental adaptability. Traditional point cloud registration methods relying solely on offline maps often exhibit limited robustness against long-term environmental changes, leading to localization drift and reliability degradation in dynamic real-world scenarios. To address these challenges, this paper proposes DuLoc, a robust and accurate localization method that tightly couples LiDAR-inertial odometry with offline map-based localization, incorporating a constant-velocity motion model to mitigate outlier noise in real-world scenarios. Specifically, we develop a LiDAR-based localization framework that seamlessly integrates a prior global map with dynamic real-time local maps, enabling robust localization in unbounded and changing environments. Extensive real-world experiments in ultra unbounded port that involve 2,856 hours of operational data across 32 Intelligent Guided Vehicles (IGVs) are conducted and reported in this study. The results attained demonstrate that our system outperforms other state-of-the-art LiDAR localization systems in large-scale changing outdoor environments.
Abstract:Multimodal Large Language Models (MLLMs) show impressive vision-language benchmark performance, yet growing concerns about data contamination (test set exposure during training) risk masking true generalization. This concern extends to reasoning MLLMs, often fine-tuned via reinforcement learning from potentially contaminated base models. We propose a novel dynamic evaluation framework to rigorously assess MLLM generalization, moving beyond static benchmarks. Instead of perturbing inputs, we perturb the task itself. Using the same visual input, models are evaluated across a family of tasks (e.g., QA, captioning, question posing, verification) to probe diverse capabilities. This task perturbation reveals whether model performance is robust or reliant on superficial task-specific cues. Our approach is analogous to loss landscape sharpness: models overfit or contaminated for a single task (sharp minima) falter under task shifts, unlike models with generalizable solutions (flatter minima). We developed an automated pipeline with a calibrated judge scoring open-ended generations (captions, questions) using paraphrase and corruption sampling. Applying this framework to leading image/video MLLMs on benchmarks including MME, RealWorldQA, and CVRR-ES, we analyze each model's cross-task "ability vector." We demonstrate that fine-tuning on simulated test data (extreme contamination) drastically sharpens task-specific performance but harms overall generalization. Our dynamic task perturbation offers deeper insights into MLLM generalization, distinguishing genuine understanding from spurious leakage or overfitting.
Abstract:Although large language models (LLMs) have demonstrated remarkable reasoning capabilities, they still face challenges in knowledge-intensive multi-hop reasoning. Recent work explores iterative retrieval to address complex problems. However, the lack of intermediate guidance often results in inaccurate retrieval and flawed intermediate reasoning, leading to incorrect reasoning. To address these, we propose Self-Critique Guided Iterative Reasoning (SiGIR), which uses self-critique feedback to guide the iterative reasoning process. Specifically, through end-to-end training, we enable the model to iteratively address complex problems via question decomposition. Additionally, the model is able to self-evaluate its intermediate reasoning steps. During iterative reasoning, the model engages in branching exploration and employs self-evaluation to guide the selection of promising reasoning trajectories. Extensive experiments on three multi-hop reasoning datasets demonstrate the effectiveness of our proposed method, surpassing the previous SOTA by $8.6\%$. Furthermore, our thorough analysis offers insights for future research. Our code, data, and models are available at Github: https://github.com/zchuz/SiGIR-MHQA.
Abstract:Current large vision-language models (LVLMs) typically employ a connector module to link visual features with text embeddings of large language models (LLMs) and use end-to-end training to achieve multi-modal understanding in a unified process. Well alignment needs high-quality pre-training data and a carefully designed training process. Current LVLMs face challenges when addressing complex vision-language reasoning tasks, with their reasoning capabilities notably lagging behind those of LLMs. This paper proposes a paradigm shift: instead of training end-to-end vision-language reasoning models, we advocate for developing a decoupled reasoning framework based on existing visual interpretation specialists and text-based reasoning LLMs. Our approach leverages (1) a dedicated vision-language model to transform the visual content of images into textual descriptions and (2) an LLM to perform reasoning according to the visual-derived text and the original question. This method presents a cost-efficient solution for multi-modal model development by optimizing existing models to work collaboratively, avoiding end-to-end development of vision-language models from scratch. By transforming images into language model-compatible text representations, it facilitates future low-cost and flexible upgrades to upcoming powerful LLMs. We introduce an outcome-rewarded joint-tuning strategy to optimize the cooperation between the visual interpretation and linguistic reasoning model. Evaluation results on vision-language benchmarks demonstrate that the decoupled reasoning framework outperforms recent LVLMs. Our approach yields particularly significant performance gains on visually intensive geometric mathematics problems. The code is available: https://github.com/guozix/DVLR.




Abstract:Generating photorealistic driving videos has seen significant progress recently, but current methods largely focus on ordinary, non-adversarial scenarios. Meanwhile, efforts to generate adversarial driving scenarios often operate on abstract trajectory or BEV representations, falling short of delivering realistic sensor data that can truly stress-test autonomous driving (AD) systems. In this work, we introduce Challenger, a framework that produces physically plausible yet photorealistic adversarial driving videos. Generating such videos poses a fundamental challenge: it requires jointly optimizing over the space of traffic interactions and high-fidelity sensor observations. Challenger makes this affordable through two techniques: (1) a physics-aware multi-round trajectory refinement process that narrows down candidate adversarial maneuvers, and (2) a tailored trajectory scoring function that encourages realistic yet adversarial behavior while maintaining compatibility with downstream video synthesis. As tested on the nuScenes dataset, Challenger generates a diverse range of aggressive driving scenarios-including cut-ins, sudden lane changes, tailgating, and blind spot intrusions-and renders them into multiview photorealistic videos. Extensive evaluations show that these scenarios significantly increase the collision rate of state-of-the-art end-to-end AD models (UniAD, VAD, SparseDrive, and DiffusionDrive), and importantly, adversarial behaviors discovered for one model often transfer to others.