Beijing Institute of Technology, China
Abstract:Word embeddings and language models have transformed natural language processing (NLP) by facilitating the representation of linguistic elements in continuous vector spaces. This review visits foundational concepts such as the distributional hypothesis and contextual similarity, tracing the evolution from sparse representations like one-hot encoding to dense embeddings including Word2Vec, GloVe, and fastText. We examine both static and contextualized embeddings, underscoring advancements in models such as ELMo, BERT, and GPT and their adaptations for cross-lingual and personalized applications. The discussion extends to sentence and document embeddings, covering aggregation methods and generative topic models, along with the application of embeddings in multimodal domains, including vision, robotics, and cognitive science. Advanced topics such as model compression, interpretability, numerical encoding, and bias mitigation are analyzed, addressing both technical challenges and ethical implications. Additionally, we identify future research directions, emphasizing the need for scalable training techniques, enhanced interpretability, and robust grounding in non-textual modalities. By synthesizing current methodologies and emerging trends, this survey offers researchers and practitioners an in-depth resource to push the boundaries of embedding-based language models.
Abstract:With a focus on natural language processing (NLP) and the role of large language models (LLMs), we explore the intersection of machine learning, deep learning, and artificial intelligence. As artificial intelligence continues to revolutionize fields from healthcare to finance, NLP techniques such as tokenization, text classification, and entity recognition are essential for processing and understanding human language. This paper discusses advanced data preprocessing techniques and the use of frameworks like Hugging Face for implementing transformer-based models. Additionally, it highlights challenges such as handling multilingual data, reducing bias, and ensuring model robustness. By addressing key aspects of data processing and model fine-tuning, this work aims to provide insights into deploying effective and ethically sound AI solutions.
Abstract:Digital Signal Processing (DSP) and Digital Image Processing (DIP) with Machine Learning (ML) and Deep Learning (DL) are popular research areas in Computer Vision and related fields. We highlight transformative applications in image enhancement, filtering techniques, and pattern recognition. By integrating frameworks like the Discrete Fourier Transform (DFT), Z-Transform, and Fourier Transform methods, we enable robust data manipulation and feature extraction essential for AI-driven tasks. Using Python, we implement algorithms that optimize real-time data processing, forming a foundation for scalable, high-performance solutions in computer vision. This work illustrates the potential of ML and DL to advance DSP and DIP methodologies, contributing to artificial intelligence, automated feature extraction, and applications across diverse domains.
Abstract:This book offers an in-depth exploration of object detection and semantic segmentation, combining theoretical foundations with practical applications. It covers state-of-the-art advancements in machine learning and deep learning, with a focus on convolutional neural networks (CNNs), YOLO architectures, and transformer-based approaches like DETR. The book also delves into the integration of artificial intelligence (AI) techniques and large language models for enhanced object detection in complex environments. A thorough discussion of big data analysis is presented, highlighting the importance of data processing, model optimization, and performance evaluation metrics. By bridging the gap between traditional methods and modern deep learning frameworks, this book serves as a comprehensive guide for researchers, data scientists, and engineers aiming to leverage AI-driven methodologies in large-scale object detection tasks.
Abstract:Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation, enabling applications across fields beyond healthcare, software engineering, and conversational systems. Despite these advancements in the past few years, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks. This review analyzes the state of research on these vulnerabilities and presents available defense strategies. We roughly categorize attack approaches into prompt-based, model-based, multimodal, and multilingual, covering techniques such as adversarial prompting, backdoor injections, and cross-modality exploits. We also review various defense mechanisms, including prompt filtering, transformation, alignment techniques, multi-agent defenses, and self-regulation, evaluating their strengths and shortcomings. We also discuss key metrics and benchmarks used to assess LLM safety and robustness, noting challenges like the quantification of attack success in interactive contexts and biases in existing datasets. Identifying current research gaps, we suggest future directions for resilient alignment strategies, advanced defenses against evolving attacks, automation of jailbreak detection, and consideration of ethical and societal impacts. This review emphasizes the need for continued research and cooperation within the AI community to enhance LLM security and ensure their safe deployment.
Abstract:This manuscript presents a comprehensive guide to Automated Machine Learning (AutoML), covering fundamental principles, practical implementations, and future trends. The paper is structured to assist both beginners and experienced practitioners, with detailed discussions on popular AutoML tools such as TPOT, AutoGluon, and Auto-Keras. It also addresses emerging topics like Neural Architecture Search (NAS) and AutoML's applications in deep learning. We believe this work will contribute to ongoing research and development in the field of AI and machine learning.
Abstract:This book introduces the theoretical foundations of FMCW radar systems, including range and velocity estimation, signal processing techniques, and the generation of radar point clouds. A detailed discussion of Python and MATLAB as the primary programming tools for radar signal processing is provided, including the integration of libraries like NumPy, Matplotlib, and SciPy for data analysis and visualization. In addition, the book covers advanced techniques such as deep learning applications for radar signal processing, focusing on Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers for analyzing radar data. Furthermore, it highlights state-of-the-art methods for human activity recognition using radar, leveraging a combination of traditional signal processing techniques and machine learning models. The book is designed to cater to both beginners and experts in radar signal processing, offering practical examples, code implementations, and insights into the future of radar technology in various domains, including autonomous systems and security applications.
Abstract:Road curbs are considered as one of the crucial and ubiquitous traffic features, which are essential for ensuring the safety of autonomous vehicles. Current methods for detecting curbs primarily rely on camera imagery or LiDAR point clouds. Image-based methods are vulnerable to fluctuations in lighting conditions and exhibit poor robustness, while methods based on point clouds circumvent the issues associated with lighting variations. However, it is the typical case that significant processing delays are encountered due to the voluminous amount of 3D points contained in each frame of the point cloud data. Furthermore, the inherently unstructured characteristics of point clouds poses challenges for integrating the latest deep learning advancements into point cloud data applications. To address these issues, this work proposes an annotation-free curb detection method leveraging Altitude Difference Image (ADI), which effectively mitigates the aforementioned challenges. Given that methods based on deep learning generally demand extensive, manually annotated datasets, which are both expensive and labor-intensive to create, we present an Automatic Curb Annotator (ACA) module. This module utilizes a deterministic curb detection algorithm to automatically generate a vast quantity of training data. Consequently, it facilitates the training of the curb detection model without necessitating any manual annotation of data. Finally, by incorporating a post-processing module, we manage to achieve state-of-the-art results on the KITTI 3D curb dataset with considerably reduced processing delays compared to existing methods, which underscores the effectiveness of our approach in curb detection tasks.
Abstract:Data augmentation is one of the most common tools in deep learning, underpinning many recent advances including tasks such as classification, detection, and semantic segmentation. The standard approach to data augmentation involves simple transformations like rotation and flipping to generate new images. However, these new images often lack diversity along the main semantic dimensions within the data. Traditional data augmentation methods cannot alter high-level semantic attributes such as the presence of vehicles, trees, and buildings in a scene to enhance data diversity. In recent years, the rapid development of generative models has injected new vitality into the field of data augmentation. In this paper, we address the lack of diversity in data augmentation for road detection task by using a pre-trained text-to-image diffusion model to parameterize image-to-image transformations. Our method involves editing images using these diffusion models to change their semantics. In essence, we achieve this goal by erasing instances of real objects from the original dataset and generating new instances with similar semantics in the erased regions using the diffusion model, thereby expanding the original dataset. We evaluate our approach on the KITTI road dataset and achieve the best results compared to other data augmentation methods, which demonstrates the effectiveness of our proposed development.
Abstract:Pre-training techniques play a crucial role in deep learning, enhancing models' performance across a variety of tasks. By initially training on large datasets and subsequently fine-tuning on task-specific data, pre-training provides a solid foundation for models, improving generalization abilities and accelerating convergence rates. This approach has seen significant success in the fields of natural language processing and computer vision. However, traditional pre-training methods necessitate large datasets and substantial computational resources, and they can only learn shared features through prolonged training and struggle to capture deeper, task-specific features. In this paper, we propose a task-oriented pre-training method that begins with generating redundant segmentation proposals using the Segment Anything (SAM) model. We then introduce a Specific Category Enhancement Fine-tuning (SCEF) strategy for fine-tuning the Contrastive Language-Image Pre-training (CLIP) model to select proposals most closely related to the drivable area from those generated by SAM. This approach can generate a lot of coarse training data for pre-training models, which are further fine-tuned using manually annotated data, thereby improving model's performance. Comprehensive experiments conducted on the KITTI road dataset demonstrate that our task-oriented pre-training method achieves an all-around performance improvement compared to models without pre-training. Moreover, our pre-training method not only surpasses traditional pre-training approach but also achieves the best performance compared to state-of-the-art self-training methods.