Abstract:In this paper, we study multi-target domain adaptation of scene understanding models. While previous methods achieved commendable results through inter-domain consistency losses, they often assumed unrealistic simultaneous access to images from all target domains, overlooking constraints such as data transfer bandwidth limitations and data privacy concerns. Given these challenges, we pose the question: How to merge models adapted independently on distinct domains while bypassing the need for direct access to training data? Our solution to this problem involves two components, merging model parameters and merging model buffers (i.e., normalization layer statistics). For merging model parameters, empirical analyses of mode connectivity surprisingly reveal that linear merging suffices when employing the same pretrained backbone weights for adapting separate models. For merging model buffers, we model the real-world distribution with a Gaussian prior and estimate new statistics from the buffers of separately trained models. Our method is simple yet effective, achieving comparable performance with data combination training baselines, while eliminating the need for accessing training data. Project page: https://air-discover.github.io/ModelMerging
Abstract:Fairness is an important topic for medical image analysis, driven by the challenge of unbalanced training data among diverse target groups and the societal demand for equitable medical quality. In response to this issue, our research adopts a data-driven strategy-enhancing data balance by integrating synthetic images. However, in terms of generating synthetic images, previous works either lack paired labels or fail to precisely control the boundaries of synthetic images to be aligned with those labels. To address this, we formulate the problem in a joint optimization manner, in which three networks are optimized towards the goal of empirical risk minimization and fairness maximization. On the implementation side, our solution features an innovative Point-Image Diffusion architecture, which leverages 3D point clouds for improved control over mask boundaries through a point-mask-image synthesis pipeline. This method outperforms significantly existing techniques in synthesizing scanning laser ophthalmoscopy (SLO) fundus images. By combining synthetic data with real data during the training phase using a proposed Equal Scale approach, our model achieves superior fairness segmentation performance compared to the state-of-the-art fairness learning models. Code is available at https://github.com/wenyi-li/FairDiff.
Abstract:Building open agents has always been the ultimate goal in AI research, and creative agents are the more enticing. Existing LLM agents excel at long-horizon tasks with well-defined goals (e.g., `mine diamonds' in Minecraft). However, they encounter difficulties on creative tasks with open goals and abstract criteria due to the inability to bridge the gap between them, thus lacking feedback for self-improvement in solving the task. In this work, we introduce autonomous embodied verification techniques for agents to fill the gap, laying the groundwork for creative tasks. Specifically, we propose the Luban agent target creative building tasks in Minecraft, which equips with two-level autonomous embodied verification inspired by human design practices: (1) visual verification of 3D structural speculates, which comes from agent synthesized CAD modeling programs; (2) pragmatic verification of the creation by generating and verifying environment-relevant functionality programs based on the abstract criteria. Extensive multi-dimensional human studies and Elo ratings show that the Luban completes diverse creative building tasks in our proposed benchmark and outperforms other baselines ($33\%$ to $100\%$) in both visualization and pragmatism. Additional demos on the real-world robotic arm show the creation potential of the Luban in the physical world.
Abstract:Semantic image synthesis (SIS) shows good promises for sensor simulation. However, current best practices in this field, based on GANs, have not yet reached the desired level of quality. As latent diffusion models make significant strides in image generation, we are prompted to evaluate ControlNet, a notable method for its dense control capabilities. Our investigation uncovered two primary issues with its results: the presence of weird sub-structures within large semantic areas and the misalignment of content with the semantic mask. Through empirical study, we pinpointed the cause of these problems as a mismatch between the noised training data distribution and the standard normal prior applied at the inference stage. To address this challenge, we developed specific noise priors for SIS, encompassing spatial, categorical, and a novel spatial-categorical joint prior for inference. This approach, which we have named SCP-Diff, has yielded exceptional results, achieving an FID of 10.53 on Cityscapes and 12.66 on ADE20K.The code and models can be accessed via the project page.