Abstract:The discovery of novel mechanical metamaterials, whose properties are dominated by their engineered structures rather than chemical composition, is a knowledge-intensive and resource-demanding process. To accelerate the design of novel metamaterials, we present MetaScientist, a human-in-the-loop system that integrates advanced AI capabilities with expert oversight with two primary phases: (1) hypothesis generation, where the system performs complex reasoning to generate novel and scientifically sound hypotheses, supported with domain-specific foundation models and inductive biases retrieved from existing literature; (2) 3D structure synthesis, where a 3D structure is synthesized with a novel 3D diffusion model based on the textual hypothesis and refined it with a LLM-based refinement model to achieve better structure properties. At each phase, domain experts iteratively validate the system outputs, and provide feedback and supplementary materials to ensure the alignment of the outputs with scientific principles and human preferences. Through extensive evaluation from human scientists, MetaScientist is able to deliver novel and valid mechanical metamaterial designs that have the potential to be highly impactful in the metamaterial field.
Abstract:Domain adaptive object detection (DAOD) aims to generalize detectors trained on an annotated source domain to an unlabelled target domain. As the visual-language models (VLMs) can provide essential general knowledge on unseen images, freezing the visual encoder and inserting a domain-agnostic adapter can learn domain-invariant knowledge for DAOD. However, the domain-agnostic adapter is inevitably biased to the source domain. It discards some beneficial knowledge discriminative on the unlabelled domain, i.e., domain-specific knowledge of the target domain. To solve the issue, we propose a novel Domain-Aware Adapter (DA-Ada) tailored for the DAOD task. The key point is exploiting domain-specific knowledge between the essential general knowledge and domain-invariant knowledge. DA-Ada consists of the Domain-Invariant Adapter (DIA) for learning domain-invariant knowledge and the Domain-Specific Adapter (DSA) for injecting the domain-specific knowledge from the information discarded by the visual encoder. Comprehensive experiments over multiple DAOD tasks show that DA-Ada can efficiently infer a domain-aware visual encoder for boosting domain adaptive object detection. Our code is available at https://github.com/Therock90421/DA-Ada.
Abstract:Data surveillance has become more covert and pervasive with AI algorithms, which can result in biased social classifications. Appearance offers intuitive identity signals, but what does it mean to let AI observe and speculate on them? We introduce AI-rays, an interactive installation where AI generates speculative identities from participants' appearance which are expressed through synthesized personal items placed in participants' bags. It uses speculative X-ray visions to contrast reality with AI-generated assumptions, metaphorically highlighting AI's scrutiny and biases. AI-rays promotes discussions on modern surveillance and the future of human-machine reality through a playful, immersive experience exploring AI biases.
Abstract:Recent text-to-image models have achieved remarkable success in generating high-quality images. However, when tasked with multi-concept generation which creates images containing multiple characters or objects, existing methods often suffer from attribute confusion, resulting in severe text-image inconsistency. We found that attribute confusion occurs when a certain region of the latent features attend to multiple or incorrect prompt tokens. In this work, we propose novel Semantic Protection Diffusion (SPDiffusion) to protect the semantics of regions from the influence of irrelevant tokens, eliminating the confusion of non-corresponding attributes. In the SPDiffusion framework, we design a Semantic Protection Mask (SP-Mask) to represent the relevance of the regions and the tokens, and propose a Semantic Protection Cross-Attention (SP-Attn) to shield the influence of irrelevant tokens on specific regions in the generation process. To evaluate our method, we created a diverse multi-concept benchmark, and SPDiffusion achieves state-of-the-art results on this benchmark, proving its effectiveness. Our method can be combined with many other application methods or backbones, such as ControlNet, Story Diffusion, PhotoMaker and PixArt-alpha to enhance their multi-concept capabilities, demonstrating strong compatibility and scalability.
Abstract:Face retouching aims to remove facial blemishes, such as pigmentation and acne, and still retain fine-grain texture details. Nevertheless, existing methods just remove the blemishes but focus little on realism of the intermediate process, limiting their use more to beautifying facial images on social media rather than being effective tools for simulating changes in facial pigmentation and ance. Motivated by this limitation, we propose our Controllable and Gradual Face Retouching (CGFR). Our CGFR is based on physical modelling, adopting Sum-of-Gaussians to approximate skin subsurface scattering in a decomposed melanin and haemoglobin color space. Our CGFR offers a user-friendly control over the facial blemishes, achieving realistic and gradual blemishes retouching. Experimental results based on actual clinical data shows that CGFR can realistically simulate the blemishes' gradual recovering process.
Abstract:Overfitting in RL has become one of the main obstacles to applications in reinforcement learning(RL). Existing methods do not provide explicit semantic constrain for the feature extractor, hindering the agent from learning a unified cross-domain representation and resulting in performance degradation on unseen domains. Besides, abundant data from multiple domains are needed. To address these issues, in this work, we propose prompt-based visual alignment (PVA), a robust framework to mitigate the detrimental domain bias in the image for zero-shot policy transfer. Inspired that Visual-Language Model (VLM) can serve as a bridge to connect both text space and image space, we leverage the semantic information contained in a text sequence as an explicit constraint to train a visual aligner. Thus, the visual aligner can map images from multiple domains to a unified domain and achieve good generalization performance. To better depict semantic information, prompt tuning is applied to learn a sequence of learnable tokens. With explicit constraints of semantic information, PVA can learn unified cross-domain representation under limited access to cross-domain data and achieves great zero-shot generalization ability in unseen domains. We verify PVA on a vision-based autonomous driving task with CARLA simulator. Experiments show that the agent generalizes well on unseen domains under limited access to multi-domain data.
Abstract:Building open agents has always been the ultimate goal in AI research, and creative agents are the more enticing. Existing LLM agents excel at long-horizon tasks with well-defined goals (e.g., `mine diamonds' in Minecraft). However, they encounter difficulties on creative tasks with open goals and abstract criteria due to the inability to bridge the gap between them, thus lacking feedback for self-improvement in solving the task. In this work, we introduce autonomous embodied verification techniques for agents to fill the gap, laying the groundwork for creative tasks. Specifically, we propose the Luban agent target creative building tasks in Minecraft, which equips with two-level autonomous embodied verification inspired by human design practices: (1) visual verification of 3D structural speculates, which comes from agent synthesized CAD modeling programs; (2) pragmatic verification of the creation by generating and verifying environment-relevant functionality programs based on the abstract criteria. Extensive multi-dimensional human studies and Elo ratings show that the Luban completes diverse creative building tasks in our proposed benchmark and outperforms other baselines ($33\%$ to $100\%$) in both visualization and pragmatism. Additional demos on the real-world robotic arm show the creation potential of the Luban in the physical world.
Abstract:In this paper, we propose a physics-inspired contrastive learning paradigm for low-light enhancement, called PIE. PIE primarily addresses three issues: (i) To resolve the problem of existing learning-based methods often training a LLE model with strict pixel-correspondence image pairs, we eliminate the need for pixel-correspondence paired training data and instead train with unpaired images. (ii) To address the disregard for negative samples and the inadequacy of their generation in existing methods, we incorporate physics-inspired contrastive learning for LLE and design the Bag of Curves (BoC) method to generate more reasonable negative samples that closely adhere to the underlying physical imaging principle. (iii) To overcome the reliance on semantic ground truths in existing methods, we propose an unsupervised regional segmentation module, ensuring regional brightness consistency while eliminating the dependency on semantic ground truths. Overall, the proposed PIE can effectively learn from unpaired positive/negative samples and smoothly realize non-semantic regional enhancement, which is clearly different from existing LLE efforts. Besides the novel architecture of PIE, we explore the gain of PIE on downstream tasks such as semantic segmentation and face detection. Training on readily available open data and extensive experiments demonstrate that our method surpasses the state-of-the-art LLE models over six independent cross-scenes datasets. PIE runs fast with reasonable GFLOPs in test time, making it easy to use on mobile devices.
Abstract:Generative adversial network (GAN) is a type of generative model that maps a high-dimensional noise to samples in target distribution. However, the dimension of noise required in GAN is not well understood. Previous approaches view GAN as a mapping from a continuous distribution to another continous distribution. In this paper, we propose to view GAN as a discrete sampler instead. From this perspective, we build a connection between the minimum noise required and the bits to losslessly compress the images. Furthermore, to understand the behaviour of GAN when noise dimension is limited, we propose divergence-entropy trade-off. This trade-off depicts the best divergence we can achieve when noise is limited. And as rate distortion trade-off, it can be numerically solved when source distribution is known. Finally, we verifies our theory with experiments on image generation.
Abstract:In the field of natural language processing, the rapid development of large language model (LLM) has attracted more and more attention. LLMs have shown a high level of creativity in various tasks, but the methods for assessing such creativity are inadequate. The assessment of LLM creativity needs to consider differences from humans, requiring multi-dimensional measurement while balancing accuracy and efficiency. This paper aims to establish an efficient framework for assessing the level of creativity in LLMs. By adapting the modified Torrance Tests of Creative Thinking, the research evaluates the creative performance of various LLMs across 7 tasks, emphasizing 4 criteria including Fluency, Flexibility, Originality, and Elaboration. In this context, we develop a comprehensive dataset of 700 questions for testing and an LLM-based evaluation method. In addition, this study presents a novel analysis of LLMs' responses to diverse prompts and role-play situations. We found that the creativity of LLMs primarily falls short in originality, while excelling in elaboration. Besides, the use of prompts and the role-play settings of the model significantly influence creativity. Additionally, the experimental results also indicate that collaboration among multiple LLMs can enhance originality. Notably, our findings reveal a consensus between human evaluations and LLMs regarding the personality traits that influence creativity. The findings underscore the significant impact of LLM design on creativity and bridges artificial intelligence and human creativity, offering insights into LLMs' creativity and potential applications.