Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided communication system is investigated. A robust joint beamforming design problem under the imperfect channel state information (CSI) is formulated to maximize the weighted sum of the Jain's fairness index and the normalized system sum rate. To solve this non-convex problem, an alternating optimization (AO) algorithm is proposed, which leverages the S-Procedure, successive convex approximation (SCA), and semidefinite relaxation (SDR). Simulation results demonstrate that with proposed algorithm: 1) various trade-offs between sum rate and user fairness can be achieved; 2) a larger trade-off region can be achieved by adopting STAR-RIS compared to conventional RIS; and 3) the performance degradation caused by imperfect CSI is less than 7% with our proposed robust beamforming approach.
Abstract:The development of sixth-generation (6G) communication technologies is confronted with the significant challenge of spectrum resource shortage. To alleviate this issue, we propose a novel simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided multiple-input multiple-output (MIMO) cognitive radio (CR) system. Specifically, the underlying secondary network in the proposed CR system reuses the same frequency resources occupied by the primary network with the help of the STAR-RIS. The secondary network sum rate maximization problem is first formulated for the STAR-RIS aided MIMO CR system. The adoption of STAR-RIS necessitates an intricate beamforming design for the considered system due to its large number of coupled coefficients. The block coordinate descent method is employed to address the formulated optimization problem. In each iteration, the beamformers at the secondary base station (SBS) are optimized by solving a quadratically constrained quadratic program (QCQP) problem. Concurrently, the STAR-RIS passive beamforming problem is resolved using tailored algorithms designed for the two phase-shift models: 1) For the independent phase-shift model, a successive convex approximation-based algorithm is proposed. 2) For the coupled phase-shift model, a penalty dual decomposition-based algorithm is conceived, in which the phase shifts and amplitudes of the STAR-RIS elements are optimized using closed-form solutions. Simulation results show that: 1) The proposed STAR-RIS aided CR communication framework can significantly enhance the sum rate of the secondary system. 2) The coupled phase-shift model results in limited performance degradation compared to the independent phase-shift model.
Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided integrated sensing, computing, and communication (ISCC) Internet of Robotic Things (IoRT) framework is proposed. Specifically, the full-duplex (FD) base station (BS) simultaneously receives the offloading signals from decision robots (DRs) and carries out target robot (TR) sensing. A computation rate maximization problem is formulated to optimize the sensing and receive beamformers at the BS and the STAR-RIS coefficients under the BS power constraint, the sensing signal-to-noise ratio constraint, and STAR-RIS coefficients constraints. The alternating optimization (AO) method is adopted to solve the proposed optimization problem. With fixed STAR-RIS coefficients, the sub-problem with respect to sensing and receiving beamformer at the BS is tackled with the weighted minimum mean-square error method. Given beamformers at the BS, the sub-problem with respect to STAR-RIS coefficients is tacked with the penalty method and successive convex approximation method. The overall algorithm is guaranteed to converge to at least a stationary point of the computation rate maximization problem. Our simulation results validate that the proposed STAR-RIS aided ISCC IoRT system can enhance the sum computation rate compared with the benchmark schemes.
Abstract:Domain adaptive object detection (DAOD) aims to generalize detectors trained on an annotated source domain to an unlabelled target domain. As the visual-language models (VLMs) can provide essential general knowledge on unseen images, freezing the visual encoder and inserting a domain-agnostic adapter can learn domain-invariant knowledge for DAOD. However, the domain-agnostic adapter is inevitably biased to the source domain. It discards some beneficial knowledge discriminative on the unlabelled domain, i.e., domain-specific knowledge of the target domain. To solve the issue, we propose a novel Domain-Aware Adapter (DA-Ada) tailored for the DAOD task. The key point is exploiting domain-specific knowledge between the essential general knowledge and domain-invariant knowledge. DA-Ada consists of the Domain-Invariant Adapter (DIA) for learning domain-invariant knowledge and the Domain-Specific Adapter (DSA) for injecting the domain-specific knowledge from the information discarded by the visual encoder. Comprehensive experiments over multiple DAOD tasks show that DA-Ada can efficiently infer a domain-aware visual encoder for boosting domain adaptive object detection. Our code is available at https://github.com/Therock90421/DA-Ada.
Abstract:Recent text-to-image models have achieved remarkable success in generating high-quality images. However, when tasked with multi-concept generation which creates images containing multiple characters or objects, existing methods often suffer from attribute confusion, resulting in severe text-image inconsistency. We found that attribute confusion occurs when a certain region of the latent features attend to multiple or incorrect prompt tokens. In this work, we propose novel Semantic Protection Diffusion (SPDiffusion) to protect the semantics of regions from the influence of irrelevant tokens, eliminating the confusion of non-corresponding attributes. In the SPDiffusion framework, we design a Semantic Protection Mask (SP-Mask) to represent the relevance of the regions and the tokens, and propose a Semantic Protection Cross-Attention (SP-Attn) to shield the influence of irrelevant tokens on specific regions in the generation process. To evaluate our method, we created a diverse multi-concept benchmark, and SPDiffusion achieves state-of-the-art results on this benchmark, proving its effectiveness. Our method can be combined with many other application methods or backbones, such as ControlNet, Story Diffusion, PhotoMaker and PixArt-alpha to enhance their multi-concept capabilities, demonstrating strong compatibility and scalability.
Abstract:Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, we introduce SEACrowd, a collaborative initiative that consolidates a comprehensive resource hub that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in SEA.
Abstract:Overfitting in RL has become one of the main obstacles to applications in reinforcement learning(RL). Existing methods do not provide explicit semantic constrain for the feature extractor, hindering the agent from learning a unified cross-domain representation and resulting in performance degradation on unseen domains. Besides, abundant data from multiple domains are needed. To address these issues, in this work, we propose prompt-based visual alignment (PVA), a robust framework to mitigate the detrimental domain bias in the image for zero-shot policy transfer. Inspired that Visual-Language Model (VLM) can serve as a bridge to connect both text space and image space, we leverage the semantic information contained in a text sequence as an explicit constraint to train a visual aligner. Thus, the visual aligner can map images from multiple domains to a unified domain and achieve good generalization performance. To better depict semantic information, prompt tuning is applied to learn a sequence of learnable tokens. With explicit constraints of semantic information, PVA can learn unified cross-domain representation under limited access to cross-domain data and achieves great zero-shot generalization ability in unseen domains. We verify PVA on a vision-based autonomous driving task with CARLA simulator. Experiments show that the agent generalizes well on unseen domains under limited access to multi-domain data.
Abstract:Electric vertical-takeoff and landing (eVTOL) aircraft, recognized for their maneuverability and flexibility, offer a promising alternative to our transportation system. However, the operational effectiveness of these aircraft faces many challenges, such as the delicate balance between energy and time efficiency, stemming from unpredictable environmental factors, including wind fields. Mathematical modeling-based approaches have been adopted to plan aircraft flight path in urban wind fields with the goal to save energy and time costs. While effective, they are limited in adapting to dynamic and complex environments. To optimize energy and time efficiency in eVTOL's flight through dynamic wind fields, we introduce a novel path planning method leveraging deep reinforcement learning. We assess our method with extensive experiments, comparing it to Dijkstra's algorithm -- the theoretically optimal approach for determining shortest paths in a weighted graph, where weights represent either energy or time cost. The results show that our method achieves a graceful balance between energy and time efficiency, closely resembling the theoretically optimal values for both objectives.
Abstract:Events describe the state changes of entities. In a document, multiple events are connected by various relations (e.g., Coreference, Temporal, Causal, and Subevent). Therefore, obtaining the connections between events through Event-Event Relation Extraction (ERE) is critical to understand natural language. There are two main problems in the current ERE works: a. Only embeddings of the event triggers are used for event feature representation, ignoring event arguments (e.g., time, place, person, etc.) and their structure within the event. b. The interconnection between relations (e.g., temporal and causal relations usually interact with each other ) is ignored. To solve the above problems, this paper proposes a jointly multiple ERE framework called GraphERE based on Graph-enhanced Event Embeddings. First, we enrich the event embeddings with event argument and structure features by using static AMR graphs and IE graphs; Then, to jointly extract multiple event relations, we use Node Transformer and construct Task-specific Dynamic Event Graphs for each type of relation. Finally, we used a multi-task learning strategy to train the whole framework. Experimental results on the latest MAVEN-ERE dataset validate that GraphERE significantly outperforms existing methods. Further analyses indicate the effectiveness of the graph-enhanced event embeddings and the joint extraction strategy.
Abstract:Events are essential components of speech and texts, describing the changes in the state of entities. The event extraction task aims to identify and classify events and find their participants according to event schemas. Manually predefined event schemas have limited coverage and are hard to migrate across domains. Therefore, the researchers propose Liberal Event Extraction (LEE), which aims to extract events and discover event schemas simultaneously. However, existing LEE models rely heavily on external language knowledge bases and require the manual development of numerous rules for noise removal and knowledge alignment, which is complex and laborious. To this end, we propose a Prompt-based Graph Model for Liberal Event Extraction (PGLEE). Specifically, we use a prompt-based model to obtain candidate triggers and arguments, and then build heterogeneous event graphs to encode the structures within and between events. Experimental results prove that our approach achieves excellent performance with or without predefined event schemas, while the automatically detected event schemas are proven high quality.