A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided communication system is investigated. A robust joint beamforming design problem under the imperfect channel state information (CSI) is formulated to maximize the weighted sum of the Jain's fairness index and the normalized system sum rate. To solve this non-convex problem, an alternating optimization (AO) algorithm is proposed, which leverages the S-Procedure, successive convex approximation (SCA), and semidefinite relaxation (SDR). Simulation results demonstrate that with proposed algorithm: 1) various trade-offs between sum rate and user fairness can be achieved; 2) a larger trade-off region can be achieved by adopting STAR-RIS compared to conventional RIS; and 3) the performance degradation caused by imperfect CSI is less than 7% with our proposed robust beamforming approach.