Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided communication system is investigated. A robust joint beamforming design problem under the imperfect channel state information (CSI) is formulated to maximize the weighted sum of the Jain's fairness index and the normalized system sum rate. To solve this non-convex problem, an alternating optimization (AO) algorithm is proposed, which leverages the S-Procedure, successive convex approximation (SCA), and semidefinite relaxation (SDR). Simulation results demonstrate that with proposed algorithm: 1) various trade-offs between sum rate and user fairness can be achieved; 2) a larger trade-off region can be achieved by adopting STAR-RIS compared to conventional RIS; and 3) the performance degradation caused by imperfect CSI is less than 7% with our proposed robust beamforming approach.
Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided near-field multiple-input multiple-output (MIMO) communication framework is proposed. A weighted sum rate maximization problem for the joint optimization of the active beamforming at the base station (BS) and the transmission/reflection-coefficients (TRCs) at the STAR-RIS is formulated. The resulting non-convex problem is solved by the developed block coordinate descent (BCD)-based algorithm. Numerical results illustrate that the near-field beamforming for the STAR-RIS aided MIMO communications significantly improve the achieved weighted sum rate.
Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided integrated sensing, computing, and communication (ISCC) Internet of Robotic Things (IoRT) framework is proposed. Specifically, the full-duplex (FD) base station (BS) simultaneously receives the offloading signals from decision robots (DRs) and carries out target robot (TR) sensing. A computation rate maximization problem is formulated to optimize the sensing and receive beamformers at the BS and the STAR-RIS coefficients under the BS power constraint, the sensing signal-to-noise ratio constraint, and STAR-RIS coefficients constraints. The alternating optimization (AO) method is adopted to solve the proposed optimization problem. With fixed STAR-RIS coefficients, the sub-problem with respect to sensing and receiving beamformer at the BS is tackled with the weighted minimum mean-square error method. Given beamformers at the BS, the sub-problem with respect to STAR-RIS coefficients is tacked with the penalty method and successive convex approximation method. The overall algorithm is guaranteed to converge to at least a stationary point of the computation rate maximization problem. Our simulation results validate that the proposed STAR-RIS aided ISCC IoRT system can enhance the sum computation rate compared with the benchmark schemes.