Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided near-field multiple-input multiple-output (MIMO) communication framework is proposed. A weighted sum rate maximization problem for the joint optimization of the active beamforming at the base station (BS) and the transmission/reflection-coefficients (TRCs) at the STAR-RIS is formulated. The resulting non-convex problem is solved by the developed block coordinate descent (BCD)-based algorithm. Numerical results illustrate that the near-field beamforming for the STAR-RIS aided MIMO communications significantly improve the achieved weighted sum rate.
Abstract:In this paper, a novel continuous-aperture array (CAPA)-based wireless communication architecture is proposed, which relies on an electrically large aperture with a continuous current distribution. First, an existing prototype of CAPA is reviewed, followed by the potential benefits and key motivations for employing CAPAs in wireless communications. Then, three practical hardware implementation approaches for CAPAs are introduced based on electronic, optical, and acoustic materials. Furthermore, several beamforming approaches are proposed to optimize the continuous current distributions of CAPAs, which are fundamentally different from those used for conventional spatially discrete arrays (SPDAs). Numerical results are provided to demonstrate their key features in low complexity and near-optimality. Based on these proposed approaches, the performance gains of CAPAs over SPDAs are revealed in terms of channel capacity as well as diversity-multiplexing gains. Finally, several open research problems in CAPA are highlighted.
Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided integrated sensing, computing, and communication (ISCC) Internet of Robotic Things (IoRT) framework is proposed. Specifically, the full-duplex (FD) base station (BS) simultaneously receives the offloading signals from decision robots (DRs) and carries out target robot (TR) sensing. A computation rate maximization problem is formulated to optimize the sensing and receive beamformers at the BS and the STAR-RIS coefficients under the BS power constraint, the sensing signal-to-noise ratio constraint, and STAR-RIS coefficients constraints. The alternating optimization (AO) method is adopted to solve the proposed optimization problem. With fixed STAR-RIS coefficients, the sub-problem with respect to sensing and receiving beamformer at the BS is tackled with the weighted minimum mean-square error method. Given beamformers at the BS, the sub-problem with respect to STAR-RIS coefficients is tacked with the penalty method and successive convex approximation method. The overall algorithm is guaranteed to converge to at least a stationary point of the computation rate maximization problem. Our simulation results validate that the proposed STAR-RIS aided ISCC IoRT system can enhance the sum computation rate compared with the benchmark schemes.
Abstract:The development of sixth-generation (6G) communication technologies is confronted with the significant challenge of spectrum resource shortage. To alleviate this issue, we propose a novel simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided multiple-input multiple-output (MIMO) cognitive radio (CR) system. Specifically, the underlying secondary network in the proposed CR system reuses the same frequency resources occupied by the primary network with the help of the STAR-RIS. The secondary network sum rate maximization problem is first formulated for the STAR-RIS aided MIMO CR system. The adoption of STAR-RIS necessitates an intricate beamforming design for the considered system due to its large number of coupled coefficients. The block coordinate descent method is employed to address the formulated optimization problem. In each iteration, the beamformers at the secondary base station (SBS) are optimized by solving a quadratically constrained quadratic program (QCQP) problem. Concurrently, the STAR-RIS passive beamforming problem is resolved using tailored algorithms designed for the two phase-shift models: 1) For the independent phase-shift model, a successive convex approximation-based algorithm is proposed. 2) For the coupled phase-shift model, a penalty dual decomposition-based algorithm is conceived, in which the phase shifts and amplitudes of the STAR-RIS elements are optimized using closed-form solutions. Simulation results show that: 1) The proposed STAR-RIS aided CR communication framework can significantly enhance the sum rate of the secondary system. 2) The coupled phase-shift model results in limited performance degradation compared to the independent phase-shift model.
Abstract:This article targets at unlocking the potentials of a class of prominent generative artificial intelligence (GAI) method, namely diffusion model (DM), for mobile communications. First, a DM-driven communication architecture is proposed, which introduces two key paradigms, i.e., conditional DM and DMdriven deep reinforcement learning (DRL), for wireless data generation and communication management, respectively. Then, we discuss the key advantages of DM-driven communication paradigms. To elaborate further, we explore DM-driven channel generation mechanisms for channel estimation, extrapolation, and feedback in multiple-input multiple-output (MIMO) systems. We showcase the numerical performance of conditional DM using the accurate DeepMIMO channel datasets, revealing its superiority in generating high-fidelity channels and mitigating unforeseen distribution shifts in sophisticated scenes. Furthermore, several DM-driven communication management designs are conceived, which is promising to deal with imperfect channels and taskoriented communications. To inspire future research developments, we highlight the potential applications and open research challenges of DM-driven communications. Code is available at https://github.com/xiaoxiaxusummer/GAI_COMM/
Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted wireless powered communication network (WPCN) is proposed, where two energy-limited devices first harvest energy from a hybrid access point (HAP) and then use that energy to transmit information back. To fully eliminate the doubly-near-far effect in WPCNs, two STAR-RIS operating protocol-driven transmission strategies, namely energy splitting non-orthogonal multiple access (ES- NOMA) and time switching time division multiple access (TS- TDMA) are proposed. For each strategy, the corresponding optimization problem is formulated to maximize the minimum throughput by jointly optimizing time allocation, user transmit power, active HAP beamforming, and passive STAR-RIS beamforming. For ES-NOMA, the resulting intractable problem is solved via a two-layer algorithm, which exploits the one-dimensional search and block coordinate descent methods in an iterative manner. For TS-TDMA, the optimal active beamforming and passive beamforming are first determined according to the maximum-ratio transmission beamformer. Then, the optimal solution of the time allocation variables is obtained by solving a standard convex problem. Numerical results show that: 1) the STAR-RIS can achieve considerable performance improvements for both strategies compared to the conventional RIS; 2) TS- TDMA is preferred for single-antenna scenarios, whereas ES- NOMA is better suited for multi-antenna scenarios; and 3) the superiority of ES-NOMA over TS-TDMA is enhanced as the number of STAR-RIS elements increases.
Abstract:Multiple-antenna technologies are advancing toward the development of extremely large aperture arrays and the utilization of extremely high frequencies, driving the progress of next-generation multiple access (NGMA). This evolution is accompanied by the emergence of near-field communications (NFC), characterized by spherical-wave propagation, which introduces additional range dimensions to the channel and enhances system throughput. In this context, a tutorial-based primer on NFC is presented, emphasizing its applications in multiuser communications and multiple access (MA). The following areas are investigated: \romannumeral1) the commonly used near-field channel models are reviewed along with their simplifications under various near-field conditions. \romannumeral2) Building upon these models, the information-theoretic capacity limits of NFC-MA are analyzed, including the derivation of sum-rate capacity and capacity region, and their upper limits for both downlink and uplink scenarios. \romannumeral3) A detailed investigation of near-field multiuser beamforming design is presented, offering low-complexity and effective NFC-MA design methodologies in both the spatial and wavenumber (angular) domains. Throughout these investigations, near-field MA is compared with its far-field counterpart to highlight its superiority and flexibility in terms of interference management, thereby laying the groundwork for achieving NGMA.
Abstract:A novel accelerated mobile edge generation (MEG) framework is proposed for generating high-resolution images on mobile devices. Exploiting a large-scale latent diffusion model (LDM) distributed across edge server (ES) and user equipment (UE), cost-efficient artificial intelligence generated content (AIGC) is achieved by transmitting low-dimensional features between ES and UE. To reduce overheads of both distributed computations and transmissions, a dynamic diffusion and feature merging scheme is conceived. By jointly optimizing the denoising steps and feature merging ratio, the image generation quality is maximized subject to latency and energy consumption constraints. To address this problem and tailor LDM sub-models, a low-complexity MEG acceleration protocol is developed. Particularly, a backbone meta-architecture is trained via offline distillation. Then, dynamic diffusion and feature merging are determined in online channel environment, which can be viewed as a constrained Markov Decision Process (MDP). A constrained variational policy optimization (CVPO) based MEG algorithm is further proposed for constraint-guaranteed learning, namely MEG-CVPO. Numerical results verify that: 1) The proposed framework can generate 1024$\times$1024 high-quality images over noisy channels while reducing over $40\%$ latency compared to conventional generation schemes. 2) The developed MEG-CVPO effectively mitigates constraint violations, thus flexibly controlling the trade-off between image distortion and generation costs.
Abstract:A novel paradigm of mobile edge generation (MEG)-enabled digital twin (DT) is proposed, which enables distributed on-device generation at mobile edge networks for real-time DT applications. First, an MEG-DT architecture is put forward to decentralize generative artificial intelligence (GAI) models onto edge servers (ESs) and user equipments (UEs), which has the advantages of low latency, privacy preservation, and individual-level customization. Then, various single-user and multi-user generation mechanisms are conceived for MEG-DT, which strike trade-offs between generation latency, hardware costs, and device coordination. Furthermore, to perform efficient distributed generation, two operating protocols are explored for transmitting interpretable and latent features between ESs and UEs, namely sketch-based generation and seed-based generation, respectively. Based on the proposed protocols, the convergence between MEG and DT are highlighted. Considering the seed-based image generation scenario, numerical case studies are provided to reveal the superiority of MEG-DT over centralized generation. Finally, promising applications and research opportunities are identified.
Abstract:The performance bounds of near-field sensing are studied for circular arrays, focusing on the impact of bandwidth and array size. The closed-form Cramer-Rao bound (CRBs) for angle and distance estimation are derived, revealing the scaling laws of the CRBs with bandwidth and array size. Contrary to expectations, enlarging array size does not always enhance sensing performance. Furthermore, the asymptotic CRBs are analyzed under different conditions, unveiling that the derived expressions include the existing results as special cases. Finally, the derived expressions are validated through numerical results.