Abstract:A novel pinching antenna system (PASS)-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed. PASS consists of multiple waveguides spanning over thousands of wavelength, which equip numerous low-cost dielectric particles, named pinching antennas (PAs), to radiate signals into free space. The positions of PAs can be reconfigured to change both the large-scale path losses and phases of signals, thus facilitating the novel pinching beamforming design. A sum rate maximization problem is formulated, which jointly optimizes the transmit and pinching beamforming to adaptively achieve constructive signal enhancement and destructive interference mitigation. To solve this highly coupled and nonconvex problem, both optimization-based and learning-based methods are proposed. 1) For the optimization-based method, a majorization-minimization and penalty dual decomposition (MM-PDD) algorithm is developed, which handles the nonconvex complex exponential component using a Lipschitz surrogate function and then invokes PDD for problem decoupling. 2) For the learning-based method, a novel Karush-Kuhn-Tucker (KKT)-guided dual learning (KDL) approach is proposed, which enables KKT solutions to be reconstructed in a data-driven manner by learning dual variables. Following this idea, a KDL-Tranformer algorithm is developed, which captures both inter-PA/inter-user dependencies and channel-state-information (CSI)-beamforming dependencies by attention mechanisms. Simulation results demonstrate that: i) The proposed PASS framework significantly outperforms conventional massive multiple input multiple output (MIMO) system even with a few PAs. ii) The proposed KDL-Transformer can improve over 30% system performance than MM-PDD algorithm, while achieving a millisecond-level response on modern GPUs.
Abstract:This article proposes a novel design for the Pinching Antenna Systems (PASS) and advocates simple yet efficient wireless communications over the `last meter'. First, the potential benefits of PASS are discussed by reviewing an existing prototype. Then, the fundamentals of PASS are introduced, including physical principles, signal models, and communication designs. In contrast to existing multi-antenna systems, PASS brings a novel concept termed \emph{Pinching Beamforming}, which is achieved by dynamically adjusting the positions of PAs. Based on this concept, a couple of practical transmission architectures are proposed for employing PASS, namely non-multiplexing and multiplexing architectures. More particularly, 1) The non-multiplexing architecture is featured by simple baseband signal processing and relies only on the pinching beamforming; while 2) the multiplexing architecture provides enhanced signal manipulation capabilities with joint baseband and pinching beamforming, which is further divided into sub-connected, fully-connected, and phase-shifter-based fully-connected schemes. Furthermore, several emerging scenarios are put forward for integrating PASS into future wireless networks. As a further advance, by demonstrating a few numerical case studies, the significant performance gain of PASS is revealed compared to conventional multi-antenna systems. Finally, several research opportunities and open problems of PASS are highlighted.
Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided communication system is investigated. A robust joint beamforming design problem under the imperfect channel state information (CSI) is formulated to maximize the weighted sum of the Jain's fairness index and the normalized system sum rate. To solve this non-convex problem, an alternating optimization (AO) algorithm is proposed, which leverages the S-Procedure, successive convex approximation (SCA), and semidefinite relaxation (SDR). Simulation results demonstrate that with proposed algorithm: 1) various trade-offs between sum rate and user fairness can be achieved; 2) a larger trade-off region can be achieved by adopting STAR-RIS compared to conventional RIS; and 3) the performance degradation caused by imperfect CSI is less than 7% with our proposed robust beamforming approach.
Abstract:A novel framework of the unmanned aerial vehicle (UAV)-mounted active simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) communications with the non-orthogonal multiple access (NOMA) is proposed for Internet-of-Things (IoT) networks. In particular, an active STAR-RIS is deployed onboard to enhance the communication link between the base station (BS) and the IoT devices, and NOMA is utilized for supporting the multi-device connectivity. Based on the proposed framework, a system sum rate maximization problem is formulated for the joint optimization of the active STAR-RIS beamforming, the UAV trajectory design, and the power allocation. To solve the non-convex problem with highly-coupled variables, an alternating optimization (AO) algorithm is proposed to decouple the original problem into three subproblems. Specifically, for the active STAR-RIS beamforming, the amplification coefficient, the power-splitting ratio, and the phase shift are incorporated into a combined variable to simplify the optimization process. Afterwards, the penalty-based method is invoked for handling the non-convex rank-one constraint. For the UAV trajectory design and the power allocation subproblems, the successive convex optimization method is applied for iteratively approximating the local-optimal solution. Numerical results demonstrate that: 1) the proposed algorithm achieves superior performance compared to the benchmarks in terms of the sum rate; and 2) the UAV-mounted active STAR-RIS can effectively enhance the channel gain from the BS to the IoT devices by the high-quality channel construction and the power compensation.
Abstract:A novel movable-element enabled simultaneously transmitting and reflecting surface (ME-STARS) communication system is proposed, where ME-STARS elements positions can be adjusted to enhance the degress-of-freedom for transmission and reflection. For each ME-STARS operating protocols, namely energy-splitting (ES), mode switching (MS), and time switching (TS), a weighted sum rate (WSR) maximization problem is formulated to jointly optimize the active beamforming at the base station (BS) as well as the elements positions and passive beamforming at the ME-STARS. An alternative optimization (AO)-based iterative algorithm is developed to decompose the original non-convex problem into three subproblems. Specifically, the gradient descent algorithm is employed for solving the ME-STARS element position optimization subproblem, and the weighted minimum mean square error and the successive convex approximation methods are invoked for solving the active and passive beamforming subproblems, respectively. It is further demonstrated that the proposed AO algorithm for ES can be extended to solve the problems for MS and TS. Numerical results unveil that: 1) the ME-STARS can significantly improve the WSR compared to the STARS with fixed position elements and the conventional reconfigurable intelligent surface with movable elements, thanks to the extra spatial-domain diversity and the higher flexibility in beamforming; and 2) the performance gain of ME-STARS is significant in the scenarios with larger number of users or more scatterers.
Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted simultaneous wireless information and power transfer (SWIPT) system is investigated. Both active and passive STAR-RISs are considered. Passive STAR-RISs can be cost-efficiently fabricated to large aperture sizes with significant near-field regions, but the design flexibility is limited by the coupled phase-shifts. Active STAR-RISs can further amplify signals and have independent phase-shifts, but their aperture sizes are relatively small due to the high cost. To characterize and compare their performance, a power consumption minimization problem is formulated by jointly designing the beamforming at the access point (AP) and the STAR-RIS, subject to both the power and information quality-of-service requirements. To solve the resulting highly-coupled non-convex problem, the original problem is first decomposed into simpler subproblems and then an alternating optimization framework is proposed. For the passive STAR-RIS, the coupled phase-shift constraint is tackled by employing a vector-driven weight penalty method. While for the active STAR-RIS, the independent phase-shift is optimized with AP beamforming via matrix-driven semidefinite programming, and the amplitude matrix is updated using convex optimization techniques in each iteration. Numerical results show that: 1) given the same aperture sizes, the active STAR-RIS exhibits superior performance over the passive one when the aperture size is small, but the performance gap decreases with the increase in aperture size; and 2) given identical power budgets, the passive STAR-RIS is generally preferred, whereas the active STAR-RIS typically suffers performance loss for balancing between the hardware power and the amplification power.
Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided near-field multiple-input multiple-output (MIMO) communication framework is proposed. A weighted sum rate maximization problem for the joint optimization of the active beamforming at the base station (BS) and the transmission/reflection-coefficients (TRCs) at the STAR-RIS is formulated. The resulting non-convex problem is solved by the developed block coordinate descent (BCD)-based algorithm. Numerical results illustrate that the near-field beamforming for the STAR-RIS aided MIMO communications significantly improve the achieved weighted sum rate.
Abstract:In this paper, a novel continuous-aperture array (CAPA)-based wireless communication architecture is proposed, which relies on an electrically large aperture with a continuous current distribution. First, an existing prototype of CAPA is reviewed, followed by the potential benefits and key motivations for employing CAPAs in wireless communications. Then, three practical hardware implementation approaches for CAPAs are introduced based on electronic, optical, and acoustic materials. Furthermore, several beamforming approaches are proposed to optimize the continuous current distributions of CAPAs, which are fundamentally different from those used for conventional spatially discrete arrays (SPDAs). Numerical results are provided to demonstrate their key features in low complexity and near-optimality. Based on these proposed approaches, the performance gains of CAPAs over SPDAs are revealed in terms of channel capacity as well as diversity-multiplexing gains. Finally, several open research problems in CAPA are highlighted.
Abstract:A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided integrated sensing, computing, and communication (ISCC) Internet of Robotic Things (IoRT) framework is proposed. Specifically, the full-duplex (FD) base station (BS) simultaneously receives the offloading signals from decision robots (DRs) and carries out target robot (TR) sensing. A computation rate maximization problem is formulated to optimize the sensing and receive beamformers at the BS and the STAR-RIS coefficients under the BS power constraint, the sensing signal-to-noise ratio constraint, and STAR-RIS coefficients constraints. The alternating optimization (AO) method is adopted to solve the proposed optimization problem. With fixed STAR-RIS coefficients, the sub-problem with respect to sensing and receiving beamformer at the BS is tackled with the weighted minimum mean-square error method. Given beamformers at the BS, the sub-problem with respect to STAR-RIS coefficients is tacked with the penalty method and successive convex approximation method. The overall algorithm is guaranteed to converge to at least a stationary point of the computation rate maximization problem. Our simulation results validate that the proposed STAR-RIS aided ISCC IoRT system can enhance the sum computation rate compared with the benchmark schemes.
Abstract:The development of sixth-generation (6G) communication technologies is confronted with the significant challenge of spectrum resource shortage. To alleviate this issue, we propose a novel simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided multiple-input multiple-output (MIMO) cognitive radio (CR) system. Specifically, the underlying secondary network in the proposed CR system reuses the same frequency resources occupied by the primary network with the help of the STAR-RIS. The secondary network sum rate maximization problem is first formulated for the STAR-RIS aided MIMO CR system. The adoption of STAR-RIS necessitates an intricate beamforming design for the considered system due to its large number of coupled coefficients. The block coordinate descent method is employed to address the formulated optimization problem. In each iteration, the beamformers at the secondary base station (SBS) are optimized by solving a quadratically constrained quadratic program (QCQP) problem. Concurrently, the STAR-RIS passive beamforming problem is resolved using tailored algorithms designed for the two phase-shift models: 1) For the independent phase-shift model, a successive convex approximation-based algorithm is proposed. 2) For the coupled phase-shift model, a penalty dual decomposition-based algorithm is conceived, in which the phase shifts and amplitudes of the STAR-RIS elements are optimized using closed-form solutions. Simulation results show that: 1) The proposed STAR-RIS aided CR communication framework can significantly enhance the sum rate of the secondary system. 2) The coupled phase-shift model results in limited performance degradation compared to the independent phase-shift model.