A point-to-point movable element (ME) enabled reconfigurable intelligent surface (ME-RIS) communication system is investigated, where each element position can be flexibly adjusted to create favorable channel conditions. For maximizing the communication rate, an efficient ME position optimization approach is proposed. Specifically, by characterizing the cascaded channel power gain in an element-wise manner, the position of each ME is iteratively updated by invoking the successive convex approximation method. Numerical results unveil that 1) the proposed element-wise ME position optimization algorithm outperforms the gradient descent algorithm; and 2) the ME-RIS significantly improves the communication rate compared to the conventional RIS with fixed-position elements.