Abstract:A novel movable-element enabled simultaneously transmitting and reflecting surface (ME-STARS) communication system is proposed, where ME-STARS elements positions can be adjusted to enhance the degress-of-freedom for transmission and reflection. For each ME-STARS operating protocols, namely energy-splitting (ES), mode switching (MS), and time switching (TS), a weighted sum rate (WSR) maximization problem is formulated to jointly optimize the active beamforming at the base station (BS) as well as the elements positions and passive beamforming at the ME-STARS. An alternative optimization (AO)-based iterative algorithm is developed to decompose the original non-convex problem into three subproblems. Specifically, the gradient descent algorithm is employed for solving the ME-STARS element position optimization subproblem, and the weighted minimum mean square error and the successive convex approximation methods are invoked for solving the active and passive beamforming subproblems, respectively. It is further demonstrated that the proposed AO algorithm for ES can be extended to solve the problems for MS and TS. Numerical results unveil that: 1) the ME-STARS can significantly improve the WSR compared to the STARS with fixed position elements and the conventional reconfigurable intelligent surface with movable elements, thanks to the extra spatial-domain diversity and the higher flexibility in beamforming; and 2) the performance gain of ME-STARS is significant in the scenarios with larger number of users or more scatterers.
Abstract:A novel time-efficient framework is proposed for improving the robustness of a broadband multiple-input multiple-output (MIMO) system against unknown interference under rapidly-varying channels. A mean-squared error (MSE) minimization problem is formulated by optimizing the beamformers employed. Since the unknown interference statistics are the premise for solving the formulated problem, an interference statistics tracking (IST) module is first designed. The IST module exploits both the time- and spatial-domain correlations of the interference-plus-noise (IPN) covariance for the future predictions with data training. Compared to the conventional signal-free space sampling approach, the IST module can realize zero-pilot and low-latency estimation. Subsequently, an interference-resistant hybrid beamforming (IR-HBF) module is presented, which incorporates both the prior knowledge of the theoretical optimization method as well as the data-fed training. Taking advantage of the interpretable network structure, the IR-HBF module enables the simplified mapping from the interference statistics to the beamforming weights. The simulations are executed in high-mobility scenarios, where the numerical results unveil that: 1) the proposed IST module attains promising prediction accuracy compared to the conventional counterparts under different snapshot sampling errors; and 2) the proposed IR-HBF module achieves lower MSE with significantly reduced computational complexity.
Abstract:To provide seamless coverage during all flight phases, aeronautical communications systems (ACS) have to integrate space-based, air-based, as well as ground-based platforms to formulate aviation-oriented space-air-ground integrated networks (SAGINs). In continental areas, L-band aeronautical broadband communications (ABC) are gaining popularity for supporting air traffic management (ATM) modernization. However, L-band ABC faces the challenges of spectrum congestion and severe interference due to the legacy systems. To circumvent these, we propose a novel multiple-antenna aided L-band ABC paradigm to tackle the key issues of reliable and high-rate air-to-ground (A2G) transmissions. Specifically, we first introduce the development roadmap of the ABC. Furthermore, we discuss the peculiarities of the L-band ABC propagation environment and the distinctive challenges of the associated multiple-antenna techniques. To overcome these challenges, we propose an advanced multiple-antenna assisted L-band ABC paradigm from the perspective of channel estimation, reliable transmission, and multiple access. Finally, we shed light on the compelling research directions of the aviation component of SAGINs.
Abstract:This article investigates the energy efficiency issue in non-orthogonal multiple access (NOMA)-enhanced Internet-of-Things (IoT) networks, where a mobile unmanned aerial vehicle (UAV) is exploited as a flying base station to collect data from ground devices via the NOMA protocol. With the aim of maximizing network energy efficiency, we formulate a joint problem of UAV deployment, device scheduling and resource allocation. First, we formulate the joint device scheduling and spectrum allocation problem as a three-sided matching problem, and propose a novel low-complexity near-optimal algorithm. We also introduce the novel concept of `exploration' into the matching game for further performance improvement. By algorithm analysis, we prove the convergence and stability of the final matching state. Second, in an effort to allocate proper transmit power to IoT devices, we adopt the Dinkelbach's algorithm to obtain the optimal power allocation solution. Furthermore, we provide a simple but effective approach based on disk covering problem to determine the optimal number and locations of UAV's stop points to ensure that all IoT devices can be fully covered by the UAV via line-of-sight (LoS) links for the sake of better channel condition. Numerical results unveil that: i) the proposed joint UAV deployment, device scheduling and resource allocation scheme achieves much higher EE compared to predefined stationary UAV deployment case and fixed power allocation scheme, with acceptable complexity; and ii) the UAV-aided IoT networks with NOMA greatly outperforms the OMA case in terms of number of accessed devices.