To provide seamless coverage during all flight phases, aeronautical communications systems (ACS) have to integrate space-based, air-based, as well as ground-based platforms to formulate aviation-oriented space-air-ground integrated networks (SAGINs). In continental areas, L-band aeronautical broadband communications (ABC) are gaining popularity for supporting air traffic management (ATM) modernization. However, L-band ABC faces the challenges of spectrum congestion and severe interference due to the legacy systems. To circumvent these, we propose a novel multiple-antenna aided L-band ABC paradigm to tackle the key issues of reliable and high-rate air-to-ground (A2G) transmissions. Specifically, we first introduce the development roadmap of the ABC. Furthermore, we discuss the peculiarities of the L-band ABC propagation environment and the distinctive challenges of the associated multiple-antenna techniques. To overcome these challenges, we propose an advanced multiple-antenna assisted L-band ABC paradigm from the perspective of channel estimation, reliable transmission, and multiple access. Finally, we shed light on the compelling research directions of the aviation component of SAGINs.