Abstract:Current AI systems based on probabilistic neural networks, such as large language models (LLMs), have demonstrated remarkable generative capabilities yet face critical challenges including hallucination, unpredictability, and misalignment with human decision-making. These issues fundamentally stem from the over-reliance on randomized (probabilistic) neural networks-oversimplified models of biological neural networks-while neglecting the role of procedural reasoning (chain-of-thought) in trustworthy decision-making. Inspired by the human cognitive duality of fluid intelligence (flexible generation) and crystallized intelligence (structured knowledge), this study proposes a dual-channel intelligent architecture that integrates probabilistic generation (LLMs) with white-box procedural reasoning (chain-of-thought) to construct interpretable, continuously learnable, and human-aligned AI systems. Concretely, this work: (1) redefines chain-of-thought as a programmable crystallized intelligence carrier, enabling dynamic knowledge evolution and decision verification through multi-turn interaction frameworks; (2) introduces a task-driven modular network design that explicitly demarcates the functional boundaries between randomized generation and procedural control to address trustworthiness in vertical-domain applications; (3) demonstrates that multi-turn interaction is a necessary condition for intelligence emergence, with dialogue depth positively correlating with the system's human-alignment degree. This research not only establishes a new paradigm for trustworthy AI deployment but also provides theoretical foundations for next-generation human-AI collaborative systems.
Abstract:Predicting the State-of-Health (SoH) of lithium-ion batteries is a fundamental task of battery management systems on electric vehicles. It aims at estimating future SoH based on historical aging data. Most existing deep learning methods rely on filter-based feature extractors (e.g., CNN or Kalman filters) and recurrent time sequence models. Though efficient, they generally ignore cyclic features and the domain gap between training and testing batteries. To address this problem, we present CyFormer, a transformer-based cyclic time sequence model for SoH prediction. Instead of the conventional CNN-RNN structure, we adopt an encoder-decoder architecture. In the encoder, row-wise and column-wise attention blocks effectively capture intra-cycle and inter-cycle connections and extract cyclic features. In the decoder, the SoH queries cross-attend to these features to form the final predictions. We further utilize a transfer learning strategy to narrow the domain gap between the training and testing set. To be specific, we use fine-tuning to shift the model to a target working condition. Finally, we made our model more efficient by pruning. The experiment shows that our method attains an MAE of 0.75\% with only 10\% data for fine-tuning on a testing battery, surpassing prior methods by a large margin. Effective and robust, our method provides a potential solution for all cyclic time sequence prediction tasks.